$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Loop-Mediated Isothermal Amplification for the Detection of Xanthomonas arboricola pv. pruni in Peaches 원문보기

The plant pathology journal, v.35 no.6, 2019년, pp.635 - 643  

Li, Weilan (School of Applied Biosciences, Kyungpook National University) ,  Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University) ,  Back, Chang-Gi (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science) ,  Ten, Leonid N. (School of Applied Biosciences, Kyungpook National University) ,  Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)

Abstract AI-Helper 아이콘AI-Helper

To detect Xanthomonas arboricola pv. pruni, a loopmediated isothermal amplification (LAMP) detection method were developed. The LAMP assay was designed to test crude plant tissue without pre-extraction, or heating incubation, and without advanced analysis equipment. The LAMP primers were designed by...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The LAMP assay were able to test crude plant tissue without pre-extraction, or heating incubation, and it does not need advanced analysis equipment. It was successfully applied in field samples, the results were obtained by 45 min, with visual inspection, which supporting a high effective and easy processing method for plant quarantine.
  • pruni (Pagani, 2005). Leaves and fruits bearing the shot hole disease can be validate by the LAMP assay, particularly, the pathogen were successfully detected by using leaves without visible symptoms, which supporting the high sensitivity and accuracy of the proposed LAMP assay.
  • 1. Schematic representation of the primer design for the proposed loop-mediated isothermal amplification assay showing the position of the six primers spanning the target gene and the nucleotide sequences of the putative ABC transporter ATP-binding protein gene sequence used to design the primers. The right arrow indicates a sense sequence used for the primer, while the left arrow indicates the complementary sequence used for the primer.
  • The LAMP primers were designed using PrimerExplorer V4 (http://primerexplorer.jp/e/), four primers were used in this study (Fig. 1): outer primers F3 (5′-AGACGTCTAGGGCAAGCC-3′) and B3 (5′-TGCTAGAACTGACGCTGAGA-3′) and inner primers FIP (5′-ATGGGGGCCCAATCTCTAGCAATTTTGTC GGGCGACAACTTCAAC-3′) and BIP (5′-TCCACACCGATTTGCAGAAGGATTTTCGTGAGTCAATCGCAGTGT-3′).
  • The proposed LAMP method was applied for the diagnosis of field samples. Thirty-two peach varieties were used for the validation testing, 4 peach varieties were tested using diseased leaves, and 31 peach varieties were tested using healthy leaves.
  • pruni, we designed a LAMP primer system and optimized the LAMP reaction conditions using Xap1 as a positive control. The proposed LAMP method was successfully used in the diagnosis of the pathogen in field samples, providing simple and convenient field identification.
  • 4, lane 8). To evaluate the species specificity of the designed primers, 12 other Xanthomonas species strains and six strains from other genera were tested using the LAMP reaction with their genomic DNA (Table 1), and specific PCR was used to compare the sensitivity of the proposed LAMP assays. All of the Xanthomonas and nonXanthomonas strains were tested with PCR using primers Y17CoF/Y17CoR.
  • To optimize the reaction temperature, the LAMP reaction was performed under various thermal conditions (50°C, 53°C, 55°C, 58°C, 60°C, 63°C, and 65°C).

대상 데이터

  • arboricola pv. pruni BJ15 and CFBP 5530 (accession number: MF362224 and HQ896469). Moreover, the 16S rRNA gene and ABC transporter ATP-binding protein gene sequences of strain Xap1 were compared with the 13 X.
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1992. Current protocols in molecular biology. Vol. I. Greene Publishing Associates and Wiley Interscience, New York, NY. 

  2. Ballard, E. L., Dietzgen, R. G., Sly, L. I., Gouk, C., Horlock, C. and Fegan, M. 2011. Development of a Bio-PCR protocol for the detection of Xanthomonas arboricola pv. pruni. Plant Dis. 95:1109-1115. 

  3. Barionovi, D. and Scortichini, M. 2008. Integron variability in Xanthomonas arboricola pv. juglandis and Xanthomonas arboricola pv. pruni strains. FEMS Microbiol. Lett. 288:19-24. 

  4. Buhlmann, A., Pothier, J. F., Tomlinson, J. A., Frey, J. E., Boonham, N., Smits, T. H. M. and Duffy, B. 2013. Genomicsinformed design of loop-mediated isothermal amplification for detection of phytopathogenic Xanthomonas arboricola pv. pruni at the intraspecific level. Plant Pathol. 62:475-484. 

  5. Garita-Cambronero, J., Palacio-Bielsa, A., Lopez, M. M. and Cubero, J. 2017. Pan-genomic analysis permits differentiation of virulent and non-virulent strains of Xanthomonas arboricola that cohabit Prunus spp. and elucidate bacterial virulence factors. Front. Microbiol. 8:573. 

  6. Goodman, C. A. and Hattingh, M. J. 1986. Transmission of Xanthomonas campestris pv. pruni in plum and apricot nursery trees by budding. HortScience 21:995-996. 

  7. Hammerschlag, F. A. 2000. Resistant responses of peach somaclone 122-1 to Xanthomonas campestris pv. pruni and to Pseudomonas syringae pv. syringae. HortScience 35:141-143. 

  8. Iwamoto, T., Sonobe, T. and Hayashi, K. 2003. Loop-mediated isothermal ampli-cation for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J. Clin. Microbiol. 41:2616-2622. 

  9. Kawaguchi, A. 2014. Genetic diversity of Xanthomonas arboricola pv. pruni strains in Japan revealed by DNA fingerprinting. J. Gen. Plant Pathol. 80:366-369. 

  10. Lane, D. J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, eds. by E. Stackebrandt and M. Goodfellow, pp. 115-175. Wiley, New York, USA. 

  11. Lopez-Soriano, P., Noguera, P., Gorris, M. T., Puchades, R., Maquieira, A., Marco-Noales, E. and Lopez, M. M. 2017. Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. pruni in symptomatic field samples. PLoS ONE 12:e0176201. 

  12. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E63. 

  13. Pagani, M. C. 2005. An ABC transporter protein and molecular diagnosis of Xanthomonas arboricola pv. pruni causing bacterial spot of stone fruits. Ph.D. thesis. North Carolina State University, Raleigh, NC, USA. 

  14. Palacio-Bielsa, A., Cubero, J., Cambra, M. A., Collados, R., Berruete, I. M. and Lopez, M. M. 2011. Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species. Appl. Environ. Microbiol. 77:89-97. 

  15. Palacio-Bielsa, A., Lopez-Soriano, P., Buhlmann, A., van Doorn, J., Pham, K., Cambra, M. A., Berruete, I. M., Pothier, J. F., Duffy, B., Olmos, A. and Lopez, M. M. 2015. Evaluation of a real-time PCR and a loop-mediated isothermal amplification for detection of Xanthomonas arboricola pv. pruni in plant tissue samples. J. Microbiol. Methods 112:36-39. 

  16. Park, S. Y., Lee, Y. S., Koh, Y. J., Hur, J.-S. and Jung, J. S. 2010. Detection of Xanthomonas arboricola pv. pruni by PCR using primers based on DNA sequences related to the hrp genes. J. Microbiol. 48:554-558. 

  17. Park, S. Y., Lee, Y. S., Shin, J. S., Koh, Y. J. and Jung, J. S. 2009. Genetic diversity of Xanthomonas arboricola pv. pruni isolated in Korea. J. Life Sci. 19:684-687. 

  18. Pothier, J. F., Pagani, M. C., Pelludat, C., Ritchie, D. F. and Duffy, B. 2011. A duplex-PCR method for species- and pathovarlevel identification and detection of the quarantine plant pathogen Xanthomonas arboricola pv. pruni. J. Microbiol. Methods 86:16-24. 

  19. Ritchie, D. F. 1995. Bacterial spot. In: Compendium of stone fruit diseases, eds. by J. M. Ogawa, E. I. Zehr, G. W. Bird, D. F. Ritchie, K. Uriu and J. K. Uyemoto, pp. 50-52. APS Press, St. Paul, MN, USA. 

  20. Ritchie, D. F. 1999. Sprays for control of bacterial spot of peach cultivars having different levels of disease susceptibility, 1998. Fungic. Nematic. Tests 54:63-64. 

  21. Snaidr, J., Amann, R., Huber, I., Ludwig, W. and Schleifer, K. H. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63:2884-2896. 

  22. Tan, L., Rong, W., Lou, H., Chen, Y. and He, C. 2014. The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. New Phytol. 204:595-608. 

  23. Vauterin, L., Hoste, B., Kersters, K. and Swings, J. 1995. Reclassi-cation of Xanthomonas. Int. J. Syst. Evol. Bacteriol. 45:472-489. 

  24. Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613-1617. 

  25. Zaccardelli, M., Malaguti, S. and Bazzi, C. 1998. Biological and epidemiological aspects of Xanthomonas arboricola pv. pruni on peach in Italy. J. Plant Pathol. 80:125-132. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로