$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Identification of new protein-coding genes with a potential role in the virulence of the plant pathogen Xanthomonas euvesicatoria 원문보기

BMC genomics, v.18, 2017년, pp.625 -   

Abendroth, Ulrike (Institute for Biology, Department of Genetics, Martin-Luther-Universitä) ,  Adlung, Norman (t Halle-Wittenberg, D-06099 Halle, Germany) ,  Otto, Andreas (Institute for Biology, Department of Genetics, Martin-Luther-Universitä) ,  Grüneisen, Benjamin (t Halle-Wittenberg, D-06099 Halle, Germany) ,  Becher, Dörte (Institute for Microbiology, Department of Mass Spectrometry, Ernst-Moritz-Arndt-Universitä) ,  Bonas, Ulla (t, D-17487 Greifswald, Germany)

Abstract AI-Helper 아이콘AI-Helper

BackgroundBacteria of the genus Xanthomonas are economically important plant pathogens. Pathogenicity of Xanthomonas spp. depends on the type III-secretion system and additional virulence determinants. The number of sequenced Xanthomonas genomes increases rapidly, however, accurate annotation of the...

주제어

참고문헌 (69)

  1. 1. Sanger F Coulson AR Friedmann T Air GM Barrell BG Brown NL The nucleotide sequence of bacteriophage phiX174 J Mol Biol 1978 125 2 225 246 10.1016/0022-2836(78)90346-7 731693 

  2. 2. Médigue C, Danchin A. Annotating bacterial genomes. Mod Genome Annotation. 2008:165–90. 

  3. 3. Delcher AL Bratke KA Powers EC Salzberg SL Identifying bacterial genes and endosymbiont DNA with glimmer Bioinformatics 2007 23 6 673 679 10.1093/bioinformatics/btm009 17237039 

  4. 4. Hyatt D Chen G-L LoCascio PF Land ML Larimer FW Hauser LJ Prodigal: prokaryotic gene recognition and translation initiation site identification BMC Bioinform 2010 11 1 119 10.1186/1471-2105-11-119 

  5. 5. Besemer J Borodovsky M GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses Nucleic Acids Res 2005 33 Web Server issue W451 W454 10.1093/nar/gki487 15980510 

  6. 6. Larsen TS Krogh A EasyGene–a prokaryotic gene finder that ranks ORFs by statistical significance BMC Bioinform 2003 4 1 21 10.1186/1471-2105-4-21 

  7. 7. Salzberg SL Delcher AL Kasif S White O Microbial gene identification using interpolated Markov models Nucleic Acids Res 1998 26 2 544 548 10.1093/nar/26.2.544 9421513 

  8. 8. Besemer J Lomsadze A Borodovsky M GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions Nucleic Acids Res 2001 29 12 2607 2618 10.1093/nar/29.12.2607 11410670 

  9. 9. Renuse S Chaerkady R Pandey A Proteogenomics Proteomics 2011 11 4 620 630 10.1002/pmic.201000615 21246734 

  10. 10. Jones JB Lacy GH Bouzar H Stall RE Schaad NW Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper Syst Appl Microbiol 2004 27 6 755 762 10.1078/0723202042369884 15612634 

  11. 11. Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, et al. Whole-genome sequences of Xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 2016;71805 

  12. 12. Thieme F Koebnik R Bekel T Berger C Boch J Büttner D Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. Vesicatoria revealed by the complete genome sequence J Bacteriol 2005 187 21 7254 7266 10.1128/JB.187.21.7254-7266.2005 16237009 

  13. 13. Leyns F De Cleene M Swings J-G De Ley J The host range of the genus Xanthomonas Bot Rev 1984 50 3 308 356 10.1007/BF02862635 

  14. 14. Büttner D Bonas U Regulation and secretion of Xanthomonas virulence factors FEMS Microbiol Rev 2010 34 2 107 133 10.1111/j.1574-6976.2009.00192.x 19925633 

  15. 15. Bonas U Schulte R Fenselau S Minsavage GV Staskawicz BJ Stall RE Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato Mol Plant-Microbe Interact 1991 4 1 81 88 10.1094/MPMI-4-081 

  16. 16. Fenselau S Balbo I Bonas U Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals Mol Plant-Microbe Interact 1992 5 5 390 396 10.1094/MPMI-5-390 1472717 

  17. 17. Bonas U Van den Ackerveken G Büttner D Hahn K Marois E Nennstiel D How the bacterial plant pathogen Xanthomonas campestris pv. vesicatoria conquers the host Mol Plant Pathol 2000 1 1 73 76 10.1046/j.1364-3703.2000.00010.x 20572953 

  18. 18. Wengelnik K, Marie C, Russel M, Bonas U. Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. Vesicatoria essential for pathogenicity and induction ofthe hypersensitive reaction. J Bacteriol. 1996a;178(4):1061-9. 

  19. 19. Wengelnik K, Van den Ackerveken G, Bonas U. HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant-Microbe Interact. 1996b;9(8):704-12. 

  20. 20. Wengelnik K Rossier O Bonas U Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. Vesicatoria result in constitutive expression of all hrp genes J Bacteriol 1999 181 21 6828 6831 10542187 

  21. 21. Schmidtke C Findeiß S Sharma CM Kuhfuß J Hoffmann S Vogel J Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions Nucleic Acids Res 2012 40 5 2020 2031 10.1093/nar/gkr904 22080557 

  22. 22. Canonne J Marino D Noël LD Arechaga I Pichereaux C Rossignol M Detection and functional characterization of a 215 amino acid N-terminal extension in the Xanthomonas type III effector XopD PLoS One 2010 5 12 e15773 10.1371/journal.pone.0015773 21203472 

  23. 23. Nielsen P Krogh A Large-scale prokaryotic gene prediction and comparison to genome annotation Bioinformatics 2005 21 24 4322 4329 10.1093/bioinformatics/bti701 16249266 

  24. 24. Butler JS Springer M Grunberg-Manago M AUU-to-AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene ( infC ) in vivo Proc Natl Acad Sci U S A 1987 84 12 4022 4025 10.1073/pnas.84.12.4022 2954162 

  25. 25. Baudet M Ortet P Gaillard JC Fernandez B Guérin P Enjalbal C Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons Mol Cell Proteomics 2010 9 2 415 426 10.1074/mcp.M900359-MCP200 19875382 

  26. 26. Wu L-T Tseng Y-H Characterization of the IncW cryptic plasmid pXV2 from Xanthomonas campestris pv. Vesicatoria Plasmid 2000 44 2 163 172 10.1006/plas.2000.1468 10964626 

  27. 27. Niu XN Wei ZQ Zou HF Xie GG Wu F Li KJ Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola BMC Microbiol 2015 15 233 10.1186/s12866-015-0562-x 26498126 

  28. 28. Szczesny R Jordan M Schramm C Schulz S Cogez V Bonas U Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria New Phytol 2010 187 4 983 1002 10.1111/j.1469-8137.2010.03312.x 20524995 

  29. 29. Solè M Scheibner F Hoffmeister AK Hartmann N Hause G Rother A Xanthomonas campestris pv. vesicatoria secretes proteases and xylanases via the Xps-type II secretion system and outer membrane vesicles J Bacteriol 2015 197 17 2879 2893 10.1128/JB.00322-15 26124239 

  30. 30. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics. 2009;10(1):104. 

  31. 31. Cianfanelli FR Monlezun L Coulthurst SJ Aim, load, fire: the type VI secretion system, a bacterial nanoweapon Trends Microbiol 2016 24 1 51 62 10.1016/j.tim.2015.10.005 26549582 

  32. 32. Lorenz C Büttner D Functional characterization of the type III secretion ATPase HrcN from the plant pathogen Xanthomonas campestris pv. vesicatoria J Bacteriol 2009 191 5 1414 1428 10.1128/JB.01446-08 19114489 

  33. 33. Minsavage G Dahlbeck D Whalen M Kearney B Bonas U Staskawicz B Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria ―pepper interactions Mol Plant-Microbe Interact 1990 3 1 41 47 10.1094/MPMI-3-041 

  34. 34. Kearney B Staskawicz BJ Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2 Nature 1990 346 385 386 10.1038/346385a0 2374611 

  35. 35. Schwartz AR, Potnis N, Timilsina S, Wilson M, Patane J, Martins Jr. J, et al. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front Microbiol. 2015. doi:10.3389/fmicb.2015.00535. 

  36. 36. Payne SH Huang S-T Pieper R A proteogenomic update to Yersinia: enhancing genome annotation BMC Genomics 2010 11 1 460 20687929 

  37. 37. Müller SA Findeiß S Pernitzsch SR Wissenbach DK Stadler PF Hofacker IL Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics J Proteome 2013 86 27 42 10.1016/j.jprot.2013.04.036 

  38. 38. Kelkar DS Kumar D Kumar P Balakrishnan L Muthusamy B Yadav AK Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry Mol Cell Proteomics 2011 10 12 M111.011627 10.1074/mcp.M111.011627 21969609 

  39. 39. Christie-Oleza JA Miotello G Armengaud J High-throughput proteogenomics of Ruegeria pomeroyi : seeding a better genomic annotation for the whole marine Roseobacter clade BMC Genomics 2012 13 73 10.1186/1471-2164-13-73 22336032 

  40. 40. Tsuge S Furutani A Ikawa Y Regulatory network of hrp gene expression in Xanthomonas oryzae pv. oryzae J Gen Plant Pathol 2014 80 4 303 313 10.1007/s10327-014-0525-3 

  41. 41. Morales C Posada J Macneale E Franklin D Rivas I Bravo M Functional analysis of the early chlorosis factor gene Mol Plant-Microbe Interact 2005 18 5 477 486 10.1094/MPMI-18-0477 15915646 

  42. 42. Büttner D Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria Microbiol Mol Biol Rev 2012 76 2 262 310 10.1128/MMBR.05017-11 22688814 

  43. 43. Alegria MC Souza DP Andrade MO Docena C Khater L Ramos CH Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. Citri J Bacteriol 2005 187 7 2315 2325 10.1128/JB.187.7.2315-2325.2005 15774874 

  44. 44. Souza DP Andrade MO Alvarez-Martinez CE Arantes GM Farah CS Salinas RK A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins PLoS Pathog 2011 7 5 e1002031 10.1371/journal.ppat.1002031 21589901 

  45. 45. Qian W Jia Y Ren S-X He Y-Q Feng J-X Lu L-F Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris Genome Res 2005 15 6 757 767 10.1101/gr.3378705 15899963 

  46. 46. He Y-Q Zhang L Jiang B-L Zhang Z-C Xu R-Q Tang D-J Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris Genome Biol 2007 8 10 R218 10.1186/gb-2007-8-10-r218 17927820 

  47. 47. Jacob TR, Laia MLd, Moreira LM, Gonçalves JF, Carvalho FMdS, Ferro MIT, et al. Type IV secretion system is not involved in infection process in citrus. Int J Microbiol. 2014;2014:763575. 

  48. 48. Souza DP Oka GU Alvarez-Martinez CE Bisson-Filho AW Dunger G Hobeika L Bacterial killing via a type IV secretion system Nat Commun 2015 6 6453 10.1038/ncomms7453 25743609 

  49. 49. Sana TG Berni B Bleves S The T6SSs of Pseudomonas aeruginosa strain PAO1 and their effectors: beyond bacterial-cell targeting Front Cell Infect Microbiol 2016 6 61 10.3389/fcimb.2016.00061 27376031 

  50. 50. Schwarz S West TE Boyer F Chiang W-C Carl MA Hood RD Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions PLoS Pathog 2010 6 8 e1001068 10.1371/journal.ppat.1001068 20865170 

  51. 51. MacIntyre DL Miyata ST Kitaoka M Pukatzki S The Vibrio cholerae type VI secretion system displays antimicrobial properties Proc Natl Acad Sci U S A 2010 107 45 19520 19524 10.1073/pnas.1012931107 20974937 

  52. 52. Fu Y Waldor MK Mekalanos JJ Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host Cell Host Microbe 2013 14 6 652 663 10.1016/j.chom.2013.11.001 24331463 

  53. 53. Murdoch SL Trunk K English G Fritsch MJ Pourkarimi E Coulthurst SJ The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors J Bacteriol 2011 193 21 6057 6069 10.1128/JB.05671-11 21890705 

  54. 54. Sana TG Flaugnatti N Lugo KA Lam LH Jacobson A Baylot V Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut Proc Natl Acad Sci U S A 2016 113 34 E5044 E5051 10.1073/pnas.1608858113 27503894 

  55. 55. Jiang F Waterfield NR Yang J Yang G Jin Q A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells Cell Host Microbe 2014 15 5 600 610 10.1016/j.chom.2014.04.010 24832454 

  56. 56. Bonas U Stall RE Staskawicz B Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria Mol Gen Genet 1989 218 1 127 136 10.1007/BF00330575 2550761 

  57. 57. Schmidtke C Abendroth U Brock J Serrania J Becker A Bonas U Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas PLoS Pathog 2013 9 9 e1003626 10.1371/journal.ppat.1003626 24068933 

  58. 58. Daniels MJ Barber CE Turner PC Sawczyc MK Byrde RJ Fielding AH Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1 EMBO J 1984 3 13 3323 3328 16453595 

  59. 59. Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, et al. Current Protocols in Molecular Biology. New York: John Wiley & Sons; 1996. 

  60. 60. Backman K Ptashne M Gilbert W Construction of plasmids carrying the cI gene of bacteriophage lambda Proc Natl Acad Sci U S A 1976 73 11 4174 4178 10.1073/pnas.73.11.4174 1069307 

  61. 61. Figurski DH Helinski DR Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans Proc Natl Acad Sci U S A 1979 76 4 1648 1652 10.1073/pnas.76.4.1648 377280 

  62. 62. Altschul SF Gish W Miller W Myers EW Lipman DJ Basic local alignment search tool J Mol Biol 1990 215 3 403 410 10.1016/S0022-2836(05)80360-2 2231712 

  63. 63. Rutherford K Parkhill J Crook J Horsnell T Rice P Rajandream M-A Artemis: sequence visualization and annotation Bioinformatics 2000 16 10 944 945 10.1093/bioinformatics/16.10.944 11120685 

  64. 64. Lorenz C Hausner J Büttner D HrcQ provides a docking site for early and late type III secretion substrates from Xanthomonas PLoS One 2012 7 11 e51063 10.1371/journal.pone.0051063 23226460 

  65. 65. Engler C Kandzia R Marillonnet S A one pot, one step, precision cloning method with high throughput capability PLoS One 2008 3 11 e3647 10.1371/journal.pone.0003647 18985154 

  66. 66. Ballvora A Pierre M van den Ackerveken G Schornack S Rossier O Ganal M Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein Mol Plant-Microbe Interact 2001 14 5 629 638 10.1094/MPMI.2001.14.5.629 11332727 

  67. 67. Marois E Van den Ackerveken G Bonas U The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host Mol Plant-Microbe Interact 2002 15 7 637 646 10.1094/MPMI.2002.15.7.637 12118879 

  68. 68. Hermjakob H Apweiler R The proteomics identifications database (PRIDE) and the ProteomExchange consortium: making proteomics data accessible Expert Rev Proteomics 2006 3 1 1 3 10.1586/14789450.3.1.1 16445344 

  69. 69. Deutsch EW Csordas A Sun Z Jarnuczak A Perez-Riverol Y Ternent T The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition Nucleic Acids Res 2017 45 D1 D1100 D1106 10.1093/nar/gkw936 27924013 

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로