$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

일부 화재현장에서 소방공무원의 직무별 다핵방향족탄화수소 및 휘발성유기화합물 노출평가
Firefighters' Exposures to Polynuclear Aromatic Hydrocarbons and Volatile Organic Compounds by Tasks in Some Fire Scenes in Korea 원문보기

한국산업보건학회지 = Journal of Korean Society of Occupational and Environmental Hygiene, v.29 no.4, 2019년, pp.477 - 487  

진수현 (롯데건설) ,  변혜정 (삼성SDS EHS그룹) ,  강태선 (세명대학교 보건안전공학과)

초록
AI-Helper 아이콘AI-Helper

목적: 소방관들은 각종 화재현장에서 다양한 유해화학물질에 노출된다고 알려져 왔다. 하지만, 이러한 소방활동이 이루어지는 동안 유해화학물질에 대한 노출이 어떤 형태로 되는 지, 노출되는 농도는 어느 정도인지 등에 대한 구체적인 연구나 조사는 거의 전무하다시피 한 상황이다. 따라서 이 연구의 목적은 첫째, 화재현장에서 소방관들이 개인적으로 노출되는 유해화학물질을 정성적, 정량적으로 모니터링하고 둘째, 각 화학물질의 농도가 소방업무와 어떠한 연관성이 있는 지 비교함과 동시에, 마지막으로 화학물질의 농도에 영향을 미치는 주요한 인자가 무엇인지에 대해서 평가하고자 하였다. 방법: 2013년 1월에서 4월까지의 기간 중 임의로 4주를 정하여 어느 화재현장을 대상으로 시료채취를 수행했고 이 때 소방관들의 직무나 화재현장의 특성, 즉 상황이나 규모 등을 함께 기록하였다. 취합된 시료는 세 가지 직무, 즉 화재진압, 오버홀 및 화재조사 등을 기준으로 분류되어 분석실로 보내어졌고 각 화학물질에 적합한 방법으로 분석되었다. 결과: 총 14건의 소방활동, 즉 화재진압 5건, 오버홀 6건, 화재조사 3건이 조사대상이었다. 채취된 모든 시료에서 벤젠을 제외하고 ACGIH-TLV를 초과한 화학물질은 없었지만, 발암물질인 PAHs의 경우는 모든 시료에서 한 종류 이상이 검출되었다. 이중 나프탈렌은 0.24~279.13 mg/㎥ (중위값 49.6 mg/㎥)의 범위로 검출되었고, 벤조피렌은 한 건의 오버홀 직무에서 10.85 ㎍/㎥가 검출되었다. 벤젠(0.01~12.2 ppm)은 모든 직무에서 검출되었으며 한 개의 시료에서 ACGIH-TLV를 초과하기도 했으나 직무간 농도를 비교했을 때에 유의한 차이는 없었다. 결론: 이상의 결과는 여러 가지 한계가 있기는 하지만, 소방활동을 수행할 때 낮은 농도에 불과할지라도 발암물질을 포함하여 인체에 유해한 영향을 줄 수 있는 연소생성물이 발생한다는 것을 보여주고 있다. 향후, 소방업무를 수행하는 사람들이 직무를 수행할 때 노출되는 유해화학물질에 대한 보다 폭넓은 연구가 수행되어 이들의 건강을 보호하기 위한 명확한 근거 자료로써 활용할 수 있어야겠다.

Abstract AI-Helper 아이콘AI-Helper

Objectives: Firefighters are known to be exposed to a variety of toxic substances, but little information is available on the exposure profile of firefighting activities. The aims of this study were to conduct exposure monitoring of toxic chemicals at fire scenes, to compare the concentrations of re...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • A multiple regression analysis was also performed to assess any correlations among target substances’ concentrations (independent variable) and firefighting tasks, confinement states, burnt area sizes, numbers of people mobilized, work time, numbers of equipment mobilized, amounts of damage, and building materials (dependent variables).
  • Despite these results, there were risks exposed to harmful chemicals at fire scenes because some poisonous materials, for example naphthalene, showed a higher concentration during firefighting rather than overhaul activity. And also, multiple regression analysis was used to identify any correlation between airborne exposure levels and influencing factors such as tasks, confinement states, numbers of firefighters dispatched, work time, numbers of mobilized equipment, property damages, and building structures as independent variables. We found that a statistically positive significant correlation between concentrations of mostly detected chemicals such as naphthalene, chrysene, benzene, toluene and confinement states (p<0.
  • Collected samples were classified into three categories such as fire extinguishing, overhaul, and fire investigation task, based on firefighters’ opinions directly at the scene according to the conditions of live fire scenes.
  • We used both laboratory and field blanks for performing quality control to assess the accuracy and precision of our analyses. For laboratory blanks, reproducibility of the analytical instrument and recovery of spiked sample were evaluated. Limit of detection (LOD) was calculated by multiplying by 3.
  • In this study, we investigated the chemical concentrations while conducting three kinds of tasks at live eight fire scenes. The results demonstrated that the firefighters were exposed to some carcinogenic substances such as benzene and PAHs including naphthalene.
  • All kinds of BTEX were detected during fire extinguishing at sauna in a public bath and during investigation at printing house. The Mann-Whitney U test analysis was conducted with two groups to compare the concentration levels of frequently detected substances including naphthalene, chrysene, benzene, and toluene between fire extinguishing and overhaul tasks (Table 4). However, it showed no significant difference (p>0.

대상 데이터

  • All the fire scenes in this study were located within a building. In modern buildings, the majority of components such as carpets, wallpapers, furniture, contain polyethylene and PVC has been known to produce a variety of toxic chemicals including carcinogens when burned.
  • Personal breathing zone samples were collected for firefighters to characterize their exposure levels. Samples were from eight fire scenes near the K fire station in Seoul during the study period (January 21~February 15, 2013). There were various locations, for example, a laundry, an outlet store, a temporary building, an underground parking lot, a sauna in a public bath, an apartment, a printing house, and a restaurant congested building.
  • This study was conducted on fire scenes attended by the K fire station, which had the most mobilizations in Seoul in 2011. A K fire station attended 362 fire accidents, making it the busiest of the 22 fire stations administered by the Seoul Metropolitan Fire Headquarters or any other stations in Korea.

데이터처리

  • A multiple regression analysis was conducted to identify the correlation between concentration levels and probably influencing factors such as tasks, confinement states, numbers of firefighters dispatched, work time, numbers of mobilized equipment, property damages, and building materials as independent variables. As a result, only confinement state had a significant relationship with concentration levels of major detected substances (Table 5).

이론/모형

  • Samples were shipped to the laboratory in an insulated container with bagged refrigerant after collection. Samples were analyzed according to NIOSH Manual of Analytical Method (NMAM) 5515 using gas chromatography-mass spectrometry (GC-MS). Analytical substances were as follows: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthrancene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h) anthrancene, benzo(g,h,l)perylene.
  • Samples were also shipped to the laboratory in an insulated container with bagged refrigerant after collection. Samples were analyzed according to NMAM 1501 using GC-FID.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Austin CC, Wang D, Ecobichon DJ, Dussault G. Characterization of volatile organic compounds in smoke at municipal structural fires. J Tox Enc Health 2001;63:437-458 (https://doi.org/10.1080/152873901300343470) 

  2. Baxter CS, Hoffman JD, Knipp MJ, Reponen T, Haynes EN. Exposure of firefighters to particulates and polycyclic aromatic hydrocarbons. J Occup Environ 2014;11(7):D85-91(https://doi.org/10.1080/15459624.2014.890286) 

  3. Bolstad-Johnson DM, Burgess JL, Crutchfield CD, Storment S, Gerkin R, et al. Characterization of firefighter exposures during fire overhaul. Am Ind Hyg Assoc J 2000;61(5):636-641 (https://doi.org/10.1080/15298660008984572) 

  4. Brandt-Rauf PW, Fallon LF, Tarantini T, Idema Cathy. Health hazards of fire fighters: exposure assessment. Br J Ind Med 1988;45:606-612 (https://doi.org/10.1136/oem.45.9.606) 

  5. Fent KW, Eisenberg J, Snawder J, Sammons D, Pleil JD, et al. Systemic exposure to PAHs and benzene in firefighters suppressing controlled structure fires. Ann Occup Hyg 2014;58(7):830-845 (https://doi.org/10.1093/annhyg/meu036) 

  6. LeMasters GK, Genaidy AM, Succop P, Deddens J, Sobeih T, et al. Cancer risk among firefighters: A review and meta-analysis of 32 studies. J Occup Environ Med 2006;48(11):1189-1202 (https://doi.org/10.1097/01.jom.0000246229.68697.90) 

  7. Miranda AI, Martins V, Cascao P. Wildland smoke exposure values and exhaled breath indicators in firefighters. J Toxi Environ Health Part A: Current Issues 2012;75(13-15):831-843 (https://doi.org/10.1080/15287394.2012.690686) 

  8. Han AR, Linton JA. Cardiovascular disease, cancer and reproductive hazards in firefighters. J Korean Med Assoc 2008;51(12):1097-1102 (https://doi.org/10.5124/jkma.2008.51.12.1097) 

  9. International Agency for Research on Cancer (IARC). IARC Monographs on the evaluation of carcinogenic risks to humans, v. p., fire extinguishing, and shiftwork. Lyon, France. 2010 

  10. Jakovic J, Jones W, Burkhart J, Noonan G. Environmental study of firefighters. Ann Occup Hyg 1991;35(6):581-602, (https://doi.org/10.1093/annhyg/35.6.581) 

  11. Jung TH. Respiratory diseases in firefighters and fire exposers. J Korean Med Assoc 2008;51(12):1087-1096 (https://doi.org/10.5124/jkma.2008.51.12.1087) 

  12. Kim. JI. Characterization of firefighter exposures during overhaul and investigation. Ph. D. Dissertation, Seoul National University, Seoul, Korea. 2007 

  13. Kim JM. Hazards Exposed to firefighters in fire - physical, chemical, and biologic factors. J Korean Med Assoc 2008;51(12):1072-1077 (https://doi.org/10.5124/jkma.2008.51.12.1072) 

  14. Oliveira M, Stezakova K, Alves MJ, Fernandes A, Teixeira JP, et al. Firefighter's exposure biomonitoring: Impact of firefighting activities on levels of urinary monohydroxy metabolites. Int J Hyg Environ Health 2016;219(8):857-866 (https://doi.org/10.1016/j.ijheh.2016.07.011) 

  15. Pukkala E, Martinsen JI, Weiderpass E. Cancer incidence among firefighters: 45 years of follow-up in five Nordic countries. Occup Environ Med 2014;71(6):1-7 (https://doi.org/10.1136/oemed-2013-101803) 

  16. Reisen F, Brown SK. Australian firefighters' exposure to air toxics during bushfire burns of autumn 2005 and 2006. Environ Int 2009;35(2):342-352 (https://doi.org/10.1016/j.envint.2008.08.011) 

  17. Sadikovic B, Rodenhiser DI. Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicol Appl Pharmacol 2006;216:458-468 (https://doi.org/10.1016/j.taap.2006.06.012) 

  18. Seoul Metropolitan Fire & Disaster Headquarters (S. M. F. D.) Fire statistics, 2016 

  19. Yong CJ. A study on occupational disease of firefighter, Ph. D. Dissertation, Dept. of Fire sProtection & Urban Disaster Management Graduate School of Industrial Technology & Information, 2008 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로