$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Sloshing suppression by floating baffle

Ocean systems engineering, v.9 no.4, 2019년, pp.409 - 422  

Kang, Hooi-Siang (Marine Technology Centre, Universiti Teknologi Malaysia) ,  Md Arif, Ummul Ghafir (School of Mechanical Engineering, Universiti Teknologi Malaysia) ,  Kim, Kyung-Sung (School of Naval Architecture and Ocean Engineering, Tongmyong University) ,  Kim, Moo-Hyun (Department of Ocean Engineering, Texas A&M University) ,  Liu, Yu-Jie (Department of Ocean Engineering, Texas A&M University) ,  Lee, Kee-Quen (Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology) ,  Wu, Yun-Ta (Department of Hydraulic and Ocean Engineering, National Cheng Kung University)

Abstract AI-Helper 아이콘AI-Helper

Sloshing is a phenomenon which may lead to dynamic stability and damages on the local structure of the tank. Hence, several anti-sloshing devices are introduced in order to reduce the impact pressure and free surface elevation of liquid. A fixed baffle is the most prevailing anti-sloshing mechanism ...

주제어

참고문헌 (39)

  1. Abramson, H.N. (1966), The dynamic behavior of liquids in moving containers, with applications to space vehicle technology, Tech. Rep. NASA-SP-106, NASA. 

  2. Akyildiz, H. and Unal, E. (2005), "Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing", Ocean Eng., 32,1503-1516. 

  3. Arai, M., Suzuki, R., Ando, T. and Kishimoto, N. (2013), Performance study of an anti-sloshing floating device for membrane-type LNG tanks. Dev Marit Transp Exploit Sea Resour IMAM 171. 

  4. Arif, U.G.M., Kamaruddin, M.H., Tang, C.H.H., Siow, C.L., Quen, L.K., Kim, K.S., Wu, Y.T. and Kang, H.S. (2019), "Sloshing in closed domain under unidirection excitation", Indian J. Geo Mar. Sci., 48, 1145-1153. 

  5. Bakti, F., Kim, M.H., Kim, K.S. and Park, J.C. (2016), "Comparative study of standard WC-SPH and MPS solvers for free surface academic problems", Int. J. Offshore Polar Eng., 26, 235-243. 

  6. Chen, H.C. (2011), "CFD simulation of compressible two-phase sloshing flow in a LNG tank", Ocean Syst. Eng., 1(1), 31-57. 

  7. Cho, I.H., Choi, J.S. and Kim, M.H. (2017), "Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle", Ocean Eng., 138, 23-34. 

  8. Demirel, E. and Aral, M. (2018), "Liquid sloshing damping in an accelerated tank using a novel slot-baffle design", Water, 10, 1565. 

  9. Faltinsen, O.M. (1974), "A nonlinear theory of sloshing in rectangular tanks", J.Ship Res., 18, 224-241. 

  10. Faltinsen, O.M. and Rognebakke, O.F. (2000), "Sloshing", Proceedings of the Int. Conf. on Ship and Shipping Research (NAV 2000), Venice, Italy. 

  11. Gnitko, V., Naumemko, Y. and Strelnikova, E. (2017), "Low frequency sloshing analysis of cylindrical containers with flat and conical baffles", Int. J. Appl. Mech. Eng., 22, 867-881. 

  12. Graczyk M (2008) "Experimental investigation of sloshing loading and load effects in membrane LNG tanks subjected to random excitation", Norwegian University of Science and Technology. 

  13. Hamlin NA (1990) Liquid slosh loading in slack ship tanks: Forces on internal structure and pressures (No. SSC-336). 

  14. Kang, X., Rakheja, S. and Stiharu, I. (2002), "Cargo load shift and its influence on tank vehicle dynamics under braking and turning", Int. J. Heavy Veh. Syst., 9, 173-203. 

  15. Kim, K.S., Kim, M.H. and Park, J.C. (2014), "Development of moving particle simulation method for multiliquid-layer sloshing", Math. Probl. Eng., 2014, 1-13. 

  16. Kim, S., Kim, Y., Park, J. and Kim, B. (2016), "Experimental study of sloshing load on LNG tanks for unrestricted filling operation", Proceedings of the 26th (2016) International Ocean and Polar Engineering Conference, Rhodes, Greece. 

  17. Kim, Y., Kim, S.Y., Ahn, Y., et al. (2013), "Model-scale sloshing tests for an anti-sloshing blanket system", Int. J. Offshore Polar Eng., 23, 254-262. 

  18. Kobayakawa, H., Kusumoto, H. and Toyoda, M. (2015), "Structural safety of IHI-SPB LNG tanks against sloshing", IHI Eng. Rev., 47, 22-26. 

  19. Kolaei, A., Rakheja, S. and Richard, M.J. (2017), "Coupled multimodal fluid-vehicle model for analysis of anti-slosh effectiveness of longitudinal baffles in a partially-filled tank vehicle", J. Fluids Struct., 70, 519-536. 

  20. Kumar, N. (2013), "Study of Sloshing Effects in a Cylindrical Tank with and without Baffles under Linear Acceleration", National Institute of Technology. 

  21. Lee, D.H., Ha, M.K., Kim, S.Y. and Shin, S.C. (2014), "Research of design challenges and new technologies for floating LNG", Int. J. Nav. Archit. Ocean Eng., 6, 307-322. 

  22. Lee, J.S., You, W.H., Yoo, C.H., et al. (2013), "An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank", Int. J. Nav. Archit. Ocean Eng., 5, 580-597. 

  23. Paik, J.K. and Shin, Y.S. (2006), "Structural damage and strength criteria for ship stiffened panels under impact pressure actions arising from sloshing, slamming and green water loading", Ships Offshore Struct., 1, 249-256. 

  24. Panigrahy, P.K., Saha, U.K., Maity, D. and Sharma, S. (2006), "Wall pressures on a square tank due to liquid sloshing", Proceedings of the 3rd International Conference on Fluid Mechanics and Fluid Power, Bombay, India. 

  25. Pastoor, W., Tveitnes, T., Valsgard, S. and Sele, H. (2004), "Sloshing in partially filled LNG tanks-an experimental survey", Proceedings of the Offshore Technology Conference. Offshore Technology Conference, Houston, Texas, USA. 

  26. Rebouillat, S. and Liksonov, D. (2010), "Fluid-structure interaction in partially filled liquid containers: A comparative review of numerical approaches", Comput Fluids, 39, 739-746. 

  27. Rognebakke, O.F., Hoff, J.R., Allers, J.M., et al. (2005), "Experimental approaches for determining sloshing loads in LNG tanks", Proceedings of the SNAME Maritime Technology Conference and Exposition, Houston, Texas. Houston, Texas, USA. 

  28. Sanapala, V.S., Rajkumar, M., Velusamy, K. and Patnaik, B.S.V. (2018), "Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container", J. Fluids Struct., 76, 229-250. 

  29. Vakilaadsarabi, A., Miyajima, M. and Murata, K. (2012), "Study of the sloshing of water reservoirs and tanks due to long period and long duration seismic motions", Procerdings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal. 

  30. Wang, W. and Xiong, Y.P. (2014), "Minimising the sloshing impact in membrane LNG tank using a baffle",: Proceedings of the 9th International Conference on Structural Dynamics (EURODYN 2014). EURODYN. 

  31. Xu, G., Hamouda, A.M.S. and Khoo, B.C. (2011), "Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation", Ocean Syst. Eng., 1(4), 355-372. 

  32. Xue, M.A., Zheng, J., Lin, P. and Yuan, X. (2017), "Experimental study on vertical baffles of different configurations in suppressing sloshing pressure", Ocean Eng., 136, 178-189. 

  33. Yamauchi, K., Yoshimura, K., Hanada, Y. and Kojima, K. (2019), "Development of Fuel Sloshing Evaluation Technique upon Crash Using Fluid-Structure Interaction Simulation", In: SAE Technical Paper 2019-01-0941. SAE International. 

  34. Younes, M.F. and Younes, Y.K. (2015), "Experimental investigation for liquid sloshing in baffled rectangular Tanks", Int. J. Sci. Technol. Res., 4, 57-61. 

  35. Yu, Y.M., Ma, N., Fan, S.M. and Gu, X.C. (2017), "Experimental and numerical studies on sloshing in a membrane-type LNG tank with two floating plates", Ocean Eng., 129, 217-227. 

  36. Zhang, C., Su, P. and Ning, D. (2019), "Hydrodynamic study of an anti-sloshing technique using floating foams", Ocean Eng., 175, 62-70. 

  37. Zhao, Y., Chen, H.C. and Yu, X. (2015),"Numerical simulation of wave slamming on 3D offshore platform deck using a coupled Level-Set and Volume-of-Fluid method for overset grid system", Ocean Syst. Eng., 5(4), 245-259. 

  38. Zhu, F., Lu, J., Li, Y. and Gan, X. (2015), "Analysis on risks and hazards of the sloshing liquid cargo tank in oil tanker", Proceedings of the International Conference on Chemical, Material and Food Engineering. 

  39. Zhuang, Y., Yin, C. and Wan, D. (2016), "Numerical study on coupling effect of LNG tank sloshing and ship motion in waves", Procerdings of the 11th Asian Computational Fluid Dynamics Conference (ACFD11), Dalian, China. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로