$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한반도 과거 지진기록에 대한 응답이력 데이터베이스 구축 기초 연구
A Fundamental Study on the Database of Response History for Historical Earthquake Records on the Korean Peninsula 원문보기

대한토목학회논문집 = Journal of the Korean Society of Civil Engineers, v.39 no.6, 2019년, pp.821 - 831  

최인혁 (한양대학교 ERICA 건설환경시스템공학과) ,  안재광 (기상청 지진화산연구과) ,  곽동엽 (한양대학교 ERICA 건설환경공학과)

초록
AI-Helper 아이콘AI-Helper

9.12지진(2016.9.12., ML=5.8)과 포항지진(2017.11.15., ML=5.4)은 사회·경제적 피해를 야기시켰고, 이로 인해 지진에 대한 국민의 관심이 과거보다 크게 높아졌다. 지진 빈도가 높은 미국, 일본, 칠레 등 불의 고리 인근의 국가에서는 이미 지진재난에 대비·대응을 위하여 지진재해도(PSHA), 지반운동예측모델(GMPE) 등을 기반으로 인프라 시설을 관리하고 있다. 국내도 앞서 설명된 PSHA, GMPE가 개별 연구자들을 통해 독자적으로 개발되고 있지만, 모델 개발시 생성한 기초 데이터 산출 방법, 최종 결과물의 주요 요소 등이 제한적으로 공개되었다. 이는 해마다 발생하는 지진의 추가를 통한 모델 개선이 아닌 과거 지진에 대해 매번 새롭게 자료 구축을 해야 한다는 문제점을 내포하고 있다. 따라서, 본 연구에서는 GMPE 개발의 기초자료인 플랫파일 생성 방법과 지진 관측자료의 지진파형의 계기보정 방법, 계기진도 생성 방법 등을 기술하였다.

Abstract AI-Helper 아이콘AI-Helper

The 9.12 earthquake (2016.9.12., ML=5.8) and Pohang (2017.11.15., ML=5.4) caused social and economic damage, resulting in a greater public interest in earthquakes than in the past. In the U.S., Japan and Chile, which have high frequency of earthquakes, infrastructure facilities are already managed b...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 한반도 지진기록에 대한 플랫파일을 만들기 위한 방법론을 상세히 설명하였고, 2016년의 지진기록에 대하여 설명된 방법을 적용하여 플랫파일을 생성하였다. 이를 통해 얻어진 요약 및 결론은 다음과 같다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
GMPE 모델을 개발하기 위한 선제적 조건은? GMPE 모델을 개발하기 위해 선제적으로 지진에 대한 플랫파일(flatfile)을 생성해야 한다. 플랫파일은 단순한 기록의 집합을 각 특성에 대하여 상관성 없이 나열한 파일로 지진기록에 대한 지진원 정보, 관측소 정보, 응답이력 정보를 기본적으로 구성하고 있으며 필요에 따라 추가적인 정보를 입력할 수 있다.
불의 고리 인근의 국가에서 지진재난에 대비, 대응하는 방법은? 4)은 사회·경제적 피해를 야기시켰고, 이로 인해 지진에 대한 국민의 관심이 과거보다 크게 높아졌다. 지진 빈도가 높은 미국, 일본, 칠레 등 불의 고리 인근의 국가에서는 이미 지진재난에 대비·대응을 위하여 지진재해도(PSHA), 지반운동예측모델(GMPE) 등을 기반으로 인프라 시설을 관리하고 있다. 국내도 앞서 설명된 PSHA, GMPE가 개별 연구자들을 통해 독자적으로 개발되고 있지만, 모델 개발시 생성한 기초 데이터 산출 방법, 최종 결과물의 주요 요소 등이 제한적으로 공개되었다.
PSHA, GMPE의 독자적 개발이 내포하고 있는 문제점은? 국내도 앞서 설명된 PSHA, GMPE가 개별 연구자들을 통해 독자적으로 개발되고 있지만, 모델 개발시 생성한 기초 데이터 산출 방법, 최종 결과물의 주요 요소 등이 제한적으로 공개되었다. 이는 해마다 발생하는 지진의 추가를 통한 모델 개선이 아닌 과거 지진에 대해 매번 새롭게 자료 구축을 해야 한다는 문제점을 내포하고 있다. 따라서, 본 연구에서는 GMPE 개발의 기초자료인 플랫파일 생성 방법과 지진 관측자료의 지진파형의 계기보정 방법, 계기진도 생성 방법 등을 기술하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (29)

  1. Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S. J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M. and Kishida, T. (2014). "NGA-West2 database." Earthq. Spectra, Vol. 30, No. 3, pp. 989-1005. 

  2. Arias, A. (1970). A measure of earthquake intensity, seismic design for nuclear power plants, Hansen, R. J., MIT Press, Cambridgo, Massachusetts, pp. 438-483. 

  3. Bastias, N. and Montalva, G. A. (2016). "Chile strong ground motion flatfile." Earthq. Spectra, Vol. 32, No. 4, pp. 2549-2566. 

  4. Boore, D. M. (2010). "Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion." Bull. Seism. Soc. Am, Vol. 100, No. 4, pp. 1830-1835. 

  5. Dawood, H. M., Rodriguez-Marek, A., Bayless, J., Goulet, C. and Thompson, E. (2016). "A flatfile for the KiK-net database processed using an automated protocol." Earthq. Spectra, Vol. 32, No. 2, pp. 1281-1302. 

  6. Emolo, A., Sharma, N., Festa, G., Zollo, A., Convertito, V., Park, J. H., Chi, H. C. and Lim, I. S. (2015). "Ground-motion prediction equations for South Korea Peninsula." Bull. Seism. Soc. Am., Vol. 105, No. 5, pp. 2625-2640. 

  7. Goulet, C. A., Kishida, T., Ancheta, T. D., Cramer, C. H., Darragh, R. B., Silva, W. J., Hashash, Y. M. A., Harmon, J., Stewart, J. P., Wooddell, K. E. and Youngs, R. R. (2014). PEER NGA-East database, Pacific Earthquake Engineering Research Center (PEER), California. 

  8. Jeong, K. H. and Lee, H. S. (2018). "Ground-motion prediction equation for South Korea based on recent earthquake records." Earthquake and Structures, Vol. 15, No. 1, pp. 29-44. 

  9. Jo, N. D. and Baag, C. E. (2003). "Estimation of spectrum decay parameter and stochastic prediction of strong ground motions in southeastern Korea." EESK J. Earthq. Eng., Vol. 7, No. 6, pp. 59-70. 

  10. Kishida, T., Contreras, V., Bozorgnia, Y., Abrahamson, N. A., Ahdi, S. K., Ancheta, T. D., Boore, D. M., Campbell, K. W., Chiou, B. S. J., Darragh, R. B. and Gregor, N. (2018). "NGA-Sub ground motion database." 11NCEE (11 National Conference on Earthquake Engineering Integrating Science, Engineering & Policy), June 25-29, 2018, Los Angeles, CA. 

  11. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2019a). Multiplatform GEOscience information system, Korea Institute of Geoscience and Mineral Resources (KIGAM), Available at: https://mgeo.kigam.re.kr/ (Accessed: October 10, 2019) (in Korean). 

  12. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2019b). Earthquake and observation net, Korea Institute of Geoscience and Mineral Resources (KIGAM), Available at: https://quake.kigam.re.kr/ (Accessed: October 10, 2019) (in Korean). 

  13. Korea Meteorological Administration (KMA) (2017). 2016 yearbook of earthquakes, Korea meteorological administration (KMA) (in Korean). 

  14. Korea Meteorological Administration (KMA) (2019). Information of earthquake staton, Korea Meteorological Administration (KMA), Available at: http://necis.kma.go.kr/ (Accessed: Jun 10, 2019) (in Korean). 

  15. Kotha, S. R., Cotton, F. and Bindi, D. (2018). "A new approach to site classification: Mixed-effects ground motion prediction equation with spectral clustering of site amplification functions." Soil Dynamics and Earthquake Engineering, Vol. 110, pp. 318-329. 

  16. Kramer, S. L. and Mitchell, R. A. (2006). "Ground motion intensity measures for liquefaction hazard evaluation." Earthquake Spectra, Vol. 22, No. 2, pp. 413-438. 

  17. Lanzano, G., Sgobba, S., Luzi, L., Puglia, R., Pacor, F., Felicetta, C., D'Amico, M., Cotton, F. and Bindi, D. (2019). "The pan-European engineering strong motion (ESM) flatfile: compilation criteria and data statistics." Bull. Earthq. Eng., Vol. 17, No. 2, pp. 561-582. 

  18. Nation Global Information Infra (NGII) (2019). National territory information platform - DEM90, Nation Global Information Infra (NGII), Available at: http://map.ngii.go.kr/ (Accessed: September 10, 2019) (in Korean). 

  19. Noh, M. H. and Lee, K. H. (1995). "Estimation of peak ground motions in the southeastern part of the Korean peninsula (II): Development of predictive equations." J. Geological society of Korea, Vol. 31, No. 3, pp. 175-187 (in Korean). 

  20. Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M. and Vigano, D. (2014). "OpenQuake engine: An open hazard (and risk) software for the global earthquake model." Seism. Research Letters, Vol. 85 No. 3, pp. 692-702. 

  21. Petersen, M. D., Moschetti, M. P., Powers, P. M., Mueller, C. S., Haller, K. M., Frankel., Zeng, Y., Rezaeian, S., Harmsen, S. C., Boyd, O. S. and Field, N. (2015). "The 2014 United States national seismic hazard model." Earthq. Spectra, Vol. 31, No. S1, pp. S1-S30. 

  22. R Core Team (2019). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. Available at: URL https://www.R-project.org/ (Accessed: September 10, 2019). 

  23. Rhie et al. (2015). A basic study on building ShakeMap database of scenario earthquakes in the Korean Peninsula, Report (in Korean). 

  24. Robinson, N., Regetz, J. and Guralnick, R. P. (2014). EarthEnv-DEM90 digital elevation model, EarthEnv, Available at: https://www.earthenv.org/DEM (Accessed: September 10, 2019). 

  25. Sheen, D. H. (2011). A study on the analysis of observations capacity by seismic observation level, Report: study on development and application of earthquake monitoring techniques, National Institute of Meteorological Research (KMA) (in Korean). 

  26. Silva, V. and Horspool, N. (2019). "Combining USGS Shake maps and the open quake-engine for damage and loss assessment." Earthquake Engineering & Structural Dynamics, Vol. 48, No. 6, pp. 634-652. 

  27. Stafford, P. J., Rodriguez-Marek, A., Edwards, B., Kruiver, P. P. and Bommer, J. J. (2017). "Scenario dependence of linear site-effect factors for short-period response spectral ordinates scenario dependence of linear site-effect factors for short-period response spectral ordinates." Bull. Seism. Soc. Am., Vol. 107, No. 6, pp, 2859-2872. 

  28. United States Geological Survey (USGS) (2019). Digital elevation - shuttle radar topography mission (SRTM) 1 Arc-second global, United States Geological Survey (USGS), Virginia, Available at: https://earthexplorer.usgs.gov/ (Accessed: September 10, 2019). 

  29. Yun, K. H., Park, D. H., Chang, C. J. and Sim, T. M. (2008). "Estimation of aleatory uncertainty of the Ground-Motion attenuation relation based on the observed data." Proc. of EESK Conference 2008, Earthquake Engineering Society of Korea, EESK, pp. 116-123 (in Korean). 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로