$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

빛의 파장이 넙치 Paralichthys olivaceus의 성장에 미치는 영향
Effects of Different Light Wavelengths on the Growth of Olive Flounder (Paralichthys olivaceus) 원문보기

생명과학회지 = Journal of life science, v.29 no.3 = no.227, 2019년, pp.311 - 317  

엔다다 레지나 베네딕트 (부경대학교 세계수산대학) ,  김여름 (부경대학교 수산생물학과) ,  김종명 (부경대학교 세계수산대학)

초록
AI-Helper 아이콘AI-Helper

빛의 파장이 넙치의 성장에 미치는 영향을 분석하기 위하여 보라색(400 nm), 청색(465 nm), 녹색(508 nm), 그리고 적색(635 nm)의 LED와 백색 형광등하에서 성장 실험을 수행하였다. 수조당 15마리 넙치를 12:12 시간 각 파장 LED의 광주기하에서 60일 동안 사육한 결과, 각기 $269.92{\pm}13.02%$$2.18{\pm}0.06$(보라색), $363.21{\pm}3.74%$$2.56{\pm}0.07$(청색), $433.22{\pm}4.83%$$2.79{\pm}0.01$(녹색), $290.17{\pm}11.83$$2.27{\pm}0.05$(적색), 그리고 $340.74{\pm}26.58%$$2.47{\pm}0.10$(형광등)의 체중 증가와 일간성장률(SGR: %/day)이 관찰되었다. 본 실험 결과 녹색 LED 하에서 넙치의 성장이 가장 빨랐으며, 적색 조명 하에서는 성장이 느린 것으로 나타났다. 대부분의 혈액 지표는 그룹별 차이가 없으나, 적색 LED조명 하에서 자란 넙치에서 높은 수준의 glutamic oxaloacetic transaminase (GOT)가 관찰되었다. 빛의 1차 감지 기관인 망막의 조직학적 분석 결과 광수용체 층의 상대적 두께에 별다른 영향이 없는 것으로 보아 녹색광이 무해함을 유추할 수 있다.

Abstract AI-Helper 아이콘AI-Helper

To investigate the effects of light on growth in fish, olive flounder (Paralichthys olivaceus) were reared under four kinds of monochromatic light-emitting diodes (LEDs) at violet (400 nm), blue (465 nm), green (508 nm), and red (635 nm) wavelengths, along with a white fluorescent lamp as control. T...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Hematological parameters of fish grown under different LED illumination conditions were analyzed to determine the effects of light on fish physiology. GPT and GOT are known to link the metabolism of proteins and carbohydrates and to serve as an indicator of altered physiological or stress conditions.
  • Red light was shown to inhibit growth in juvenile rotan, guppy, and crucian carp, but promoted weight gain in common carp [20, 27]. In this study, LED panels of different wavelengths were constructed and their effects on the growth of olive flounder were tested to identify optimal light conditions.
  • Blood plasma was separated from whole blood using centrifugation (4℃, 1,500× g, 12 min), and the supernatants were stored at -80℃ until further analysis. Levels of hematological parameters, including glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total protein (TP), and glucose (GLU) were analyzed with a chemical analyzer (FUJI DRI-CHEM FDC NX500 V2.7).
  • To assess the effects of light on fish physiology, blood samples were collected from fish grown under different light conditions. Levels of parameters including glucose (GLU), total protein (TP), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) were analyzed in plasma separated from the blood collected from fish subjected to this experiment. The results showed no significant differences in the levels of GLU, TP, and GPT among fish grown under different illumination conditions (Table 2).
  • 2. Representative photomicrographs of retina specimens prepared from the eyes of olive flounder (Paralichthys olivaceus) reared under illumination of four different LEDs (red, blue, green, and violet) and a white fluorescent lamp (control) for a period of 60 days. The photomicrograph of a retina from a fish grown under blue light illustrates the regions measured for total retina (RT) and photoreceptor layer (PR) thickness.
  • To analyze the effects of different wavelengths of light on the growth of olive flounder, fish were reared under illumination from LEDs of different wavelengths (violet, 400 nm; blue, 465 nm; green, 508 nm, and red, 635 nm) for 60 days. Growth performance was calculated from the weights and lengths of fish measured at the beginning and end of the experimental period (Table 1).

대상 데이터

  • Four types of LEDs of different wavelengths were used in this study: violet (400 nm), blue (465 nm), green (508 nm), and red (635 nm), as well as a white fluorescent light for the control group. Two sets of replicated rearing experiments were carried out with 15 fish per glass tank (50 cm × 50 cm × 50 cm).

데이터처리

  • , Armonk, New York, USA). ANOVA was used for data evaluation. Significant differences among treatments were compared using the Duncan multiple range test p<0.

이론/모형

  • Significant differences among treatments were compared using the Duncan multiple range test p<0.05) [10].
본문요약 정보가 도움이 되었나요?

참고문헌 (28)

  1. Allison, W. T., Hallows, T. E., Johnson, T., Hawryshyn, C. W. and Allen, D. M. 2006. Photic history modifies susceptibility to retinal damage in albino trout. Vis. Neurosci. 23, 25-34. 

  2. Barton, B. A., Schreck, C. B. and Barton, L. D. 1987. Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis. Aquat. Org. 2, 173-185. 

  3. Bayarri, M. J., Madrid, J. A. and Sanchez-Vazquez, F. J. 2002. Influence of light intensity, spectrum and orientation on sea bass plasma and ocular melatonin. J. Pineal Res. 32, 34-40. 

  4. Biswas, A. K., Seoka, M., Inoue, Y., Takii, K. and Kumai, H. 2005. Photoperiod influences the growth, food intake, feed efficiency and digestibility of red sea bream (Pagrus major). Aquaculture 250, 666-673. 

  5. Boeuf, G. and Le Bail, P. Y. 1999. Does light have an influence on fish growth? Aquaculture 177, 129-152. 

  6. Boulton, M., Rozanowska, M. and Rozanowska, B. 2001. Retinal photodamage. J. Photochem. Photobiol. 64, 144-161. 

  7. Bowmaker, J. K. 1990. Retinal structure of fishes. In: Douglas, R. and Djamgoz, M. (Eds.), The Visual System of Fish. Chapman & Hall, London. 

  8. Canosa, L. F., Chang, J. P. and Peter, R. E. 2007. Neuroendocrine control of growth hormone in fish. Gen. Comp. Endocrinol. 151, 1-26. 

  9. Choi, C. Y., Shin, H. S., Choi, J., Kim, N. N., Lee, J. and Kil, G. S. 2012. Effects of LED light spectra on starvation-induced oxidative stress in the cinnamon clownfish, Amphprion melanopus, Comp. Biochem. Physiol. A 163, 357e363. 

  10. Duncan, D. B. 1955 Multiple range and multiple F test. Biometrics 11, 1-42. 

  11. Harris, J. and Bird D. J. 2000. Modulation of the fish immune system by hormones. Vet. Immunol. Immunopathol. 77. 163e176. 

  12. Henne, J. P. and Watanabe, W. O. 2003. Effects of light intensity and salinity on growth, survival, and whole-body osmolality of larval southern flounder Paralichthys lethostigma. J. World Aquac. Soc. 34. 450-465. 

  13. Heydarnejad, M. S., Parto, M. and Pilevarian, A. A. 2013. Influence of light colours on growth and stress response of rainbow trout (Oncorhynchus mykiss) under laboratory conditions. J. Anim. Physiol. Anim. Nutr. 97, 67-71. 

  14. Karakatsouli, N., Papoutsoglou S. E. and Manolessos, G. 2007. Combined effects of rearing density and tank color on the growth and welfare of juvenile white sea bream Diplodus sargus L. in a recirculating water system. Aquaculture 38, 1152-1160. 

  15. Karakatsouli, N., Papoutsoglou, E. S., Sotiropoulos, N., Mourtikas, D., Stigen-Martinsen, T. and Papoutsoglou, S. E. 2010. Effects of light spectrum, rearing density and light intensity on growth performance of scaled and mirror common carp Cyprinus carpio reared under recirculating system conditions. Aquacult. Eng. 42, 121-127. 

  16. KOSTAT (Statistics KOREA). 2018. Agriculture & fishery products. 

  17. Levin, J. and McNicol, E. 1982. Color vision in fishes. Sci. Am. 246, 108-117. 

  18. Luchiari, A. C. and Freire F. A. M. 2009. Effects of environmental colour on growth of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758), maintained individually or in groups. J. Appl. Ichthyol. 25, 162-167. 

  19. Migaud, H., Cowan, M., Taylor, J. and Ferguso, H. W. 2007. The effect of spectral composition and light intensity on melatonin, stress and retinal damage in post-smolt Atlantic salmon, Salmo salar. Aquaculture 270, 390-404. 

  20. Ruchin, A. B. 2004. Influence of colored light on growth rate of juveniles of fish. Fish Physiol. Biochem. 30, 175-17. 

  21. Shin, H. S., Lee, J. and Choi, C. Y. 2012. Effects of LED light spectra on the growth of the yellowtail clownfish, Amphiprion clarkii. Fish Sci. 78, 549-556. 

  22. Takahashi, A., Kasagi, S., Murakami, N., Furufuji, S., Kikuchi, S., Mizusawa, K. and Andoh, T. 2016. Chronic effects of light irradiated from LED on the growth performance and endocrine properties of barfin flounder Verasper moseri. Gen. Comp. Endocrinol. 232, 101-108. 

  23. Taylor, J. F., Migaud, H., Porter, M. J. R. and Bromage, N. R. 2005. Photoperiod influences growth rate and plasma insulin-like growth factor-I levels in juvenile rainbow trout, Oncorhynchus mykiss. Gen. Com. Endocrinol. 142, 169-185. 

  24. Vihtelic, T. S. and Hyde, D. R. 2000. Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. J. Neurobiol. 44, 289-307. 

  25. Villamizar, N., Blanco-Vives, B., Migaud, H., Davie, A., Carboni, S. and Sanchez-Vazquez, F. J. 2011. Effects of light during early larval development of some aquaculture teleosts: a review. Aquaculture 315, 86-94. 

  26. Villamizar, N., Garcia-Alcazar, A. and Sanchez-Vazquez, F. J. 2009. Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture 292, 80-86. 

  27. Volpato, G. L., Bovi,T. S., de Freitas, R. H. A., da Sliva, D. F., Delicio, H. C., Giaquinto, P. C. and Barreto, R. E. 2013. Red light stimulates feeding motivation in fish but does not improve growth. PLoS One 8, e59134. doi: 10.1371/journal.pone.0059134. 

  28. Yamanome, T., Mizusawa, K., Hasegawa, E. I. and Takahashi, A. 2009. Green light stimulates somatic growth in the barfin flounder Verasper moseri. J. Exp. Zool. A 311, 73-79. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로