$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초임계 이산화탄소 염색 및 가공 기술
Supercritical CO2 Dyeing and Finishing Technology - A Review 원문보기

韓國染色加工學會誌 = Textile coloration and finishing, v.31 no.1, 2019년, pp.48 - 64  

이교영 (영남대학교 파이버시스템공학과) ,  채주원 (영남대학교 파이버시스템공학과) ,  이상오 (영남대학교 의류패션학과) ,  김삼수 (영남대학교 파이버시스템공학과) ,  이재웅 (영남대학교 파이버시스템공학과)

Abstract AI-Helper 아이콘AI-Helper

With evolution in the production environment of the textile industry, the need for non-water-based dyeing technologies and eco-friendly process facilities in the dyeing and processing stages has increased. In recent years, supercritical fluid dyes have been developed and commercialized in Europe, ce...

주제어

표/그림 (12)

질의응답

핵심어 질문 논문에서 추출한 답변
물을 사용하지 않는 초임계 유체 기술에 대한 개발이 요구되는 이유는 무엇인가? 기존 수계염색은 물과 에너지 소비가 많고 이로 인한 불가피한 환경 오염물질이 배출되는 시스템으로 새로운 미래지향적 산업으로의 탈바꿈을 위한 고도화 전략이 필요한 상황이다. 특히 PET섬유와 같은 소수성섬유 염색에 사용되는 분산염료는 물에 난용성인 특성으로 다량의 물이 필수적이며 분산제 및 계면활성제들이 과다하게 사용되어 폐수처리에 많은 비용이 처리되고 있기에 사회적으로 이슈가 되고 있는 환경문제를 해결하기 위한 방안의 대안으로 물을 사용하지 않는 초임계 유체 기술(Supercritical Fluid Dyeing, SFD)에 대한 개발이 요구되고 있는 시점이다3).
소수성 염료가 직물 염색 용매로서 불리한 이유는 무엇인가? 6bar, 임계온도 : 101.03℃)용매에서 염색을 시행한 사례도 있었으나, 동일 염색조건에서 염료의 용해도는 이산화탄소 중의 염료의 용해도 보다 훨씬 크지만 초임계 유체 염색시 평형 염착량의 압력에 대한 영향은 온도의 영향이 현저히 크지 않아 직물을 염색하는 용매로서는 임계온도가 상대적으로 낮은 초임계 이산화탄소가 더 유리함을 알 수 있다18).
초임계 유체란 무엇인가? 초임계 유체란 임계 압력 및 임계 온도 이상의 조건을 갖는 상태에 있는 물질로 액체와 기체로 구별을 할 수 없는 유체를 말한다. 이 유체는 일반적으로 온도와 압력이 변함에 따라 염료의 용해도가 변하며, 액체와 유사한 밀도 그리고 기체와 유사한 점도 및 확산계수를 가지고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (87)

  1. T. Kim, G. Park, W. Kong, and Y. Lee, Supercritical Dyeing Technology, Clean Technology, 24(1), 1(2018). 

  2. J. Lee, Review : Present Status of Green Chemistry, J. of the KIMST, 14(2), 246(2011). 

  3. H. Zheng, J. Zhang, J. Yan, and L. Zheng, An Industrial Scale Multiple Supercritical Carbon Dioxide Apparatus and its Eco-friendly Dyeing Production, $CO_2$ Utilizaton, 6(3), 272(2016). 

  4. Y. Lee, Supercritical Fluid Dyeing Technology, Clean Technology, 55(7), 1(2015). 

  5. M. Liu,J. Hong, Z. Hao, J. Wu, X. Xiong, and L. Zheng, Eco-friendly Curcumin-based Dyes for Supercritical Carbon Dioxide Natural Fabric Dyeing, Cleaner Production, 187(1), 1262(2018). 

  6. C. Koo, S. Yu, B. Baek, H. Cho, Y. Lee, and S. Hong, Recycling Technology of Crosslinked-Polymers Using Supercritical Fluid, Elastomers and Composites, 47(2), 111(2012). 

  7. J. K. Bal, T. Beuvier, M. S. Chebil, G. Vignaud, Y. Grohens, M. K. Sanyal, and M. K. Gibaud, Relaxation of Ultrathin Polystyrene Films Hyperswollen in Supercritical Carbon Dioxide, Macromolecules, 47(24), 8738 (2014). 

  8. C. Choi and J. Song, Swelling and Mechanical Properties of Shale and Sandstone after Reacted with Supercritical $CO_2$ , Proceedings of the ISRM Regional Symposium, Seoul, Vol.22(4), pp.266-275, 2012. 

  9. G. Kim, Supercritical Fluid Extraction Technology for Food Industry, Technology for Food Industry, Food Industry and Nutrition, 17(1), 17(2012). 

  10. E. Lee, K. Chang, Y. Kwon, and E. Lee, Optimization of the Alliins Extraction in the Garlic by Supercritical Carbon Dioxide, Food Engineering Progress, 1, 149 (1997). 

  11. G. Musgrove, A. M. Rimpel, and J. C. Wilkes, Fundamentals of Supercritical $CO_2$ , ASME Turbo Expo, Copenhagen, GT2012, p.70181, 2012. 

  12. Y. Cho, H. Kim, J. Kim, S. Lee, W. Kim, J. Ryu, and G. Lim, Extraction of Glabridin from Licorice Using Supercritical Carbon Dioxide, KSBB, 19(6), 427(2004). 

  13. Y. Ju, M. Lee, M. Woo, and S. Byun, The Current Status of Supercritical Fluid Extraction Technology and Industrial Applications, Korean J. Biotechnol. Bioeng., 20(5), 329(2005). 

  14. H. Lim, B. Choi, M. Park, S. Hwang, J. Park, J. Seo, J. Bang, E. Yoon, B. Kim, and D. Lee, Development of Power Turbine for Supercritical $CO_2$ Power System, Proceeding of Korea Supercritical Tech., Korea, pp.177-178, 2017. 

  15. G. Genov, Physical Processes of the $CO_2$ Hydrate Formation and Decomposition at Conditions Relevant to Mars, Ph.D. Thesis, Georg August University, 2005. 

  16. S. Yoon and H. Byun, Application of Separation Technology and Supercritical Fluids Process, Clean Technology, 18(2), 123(2012). 

  17. S. Kim, M. Lee, S. Back, and B. Chun, Extraction and Identification of Volatile Isothiocyanates from Wasabi using Supercritical Carbon Dioxide, Korean Society for Biotechnology and Bioengineering, 22(3), 174(2007). 

  18. U. Min, M. Ark, J. Jeon, B. Choi, and H. Bae, Dye Uptake of Polyester Fiber in Supercritical Fluids, Korean Chemical Engineering Research, 42(2), 213(2004). 

  19. J. Choi, H. Lim, K. Han, H. Kang, and D. Choi, Characterization of Degradation Features and Degradative Products of Poplar Wood(Populus alba ${\times}$ glandulosa) by Flow Type-Supercritical Water Treatment, J. Kor. For. En., 24(1), 39(2015). 

  20. J. Walther, Mineral Solubilitiesin Supercritical $H_2O$ Solutions, Pure and Applied Chemistry, Pure and Appl. Chem, 58(12), 1585(1986). 

  21. M. Fr and H. Ma, Biodiesel Production: A Review, Bioresour Technology, 70, 1(1999). 

  22. M. Garcia, A. Gonzalo, S. Luis, J. Arauzo, and C. Simoes, Methanolysis and Ethanolysis of Animal Fats: a Comparative Study of the Influence of Alcohols, Chemical Industry, 17(1), 91(2011). 

  23. K. Harvind, R. M. Tapaswy, P. D. Patil, S. Ponnusamy, C. Peter, T. Schaub, and D. Shuguang, Direct Conversion of Wet Algae to Fatty Acid Ethyl Esters under Supercritical Ethanol Conditions, J. Fuel, 115, 720(2014). 

  24. D. Prafulla, P. V. Gude, M. Aravind, D. Shuguang, P. Cooke, M. Stuart, I. Rhodes, P. Lammers, and N. Nagamany, Optimization of Direct Conversion of Wet Algae to Biodiesel under Supercritical Methanol Conditions, Bioresource Technology, 102(1), 118(2011). 

  25. A. Demirbas, Biodiesel from Vegetable Oils via Transesterification in Supercritical Methanol, Energy Conversion and Management, 43(17), 2349(2002). 

  26. M. N. Varma and G. Madras, Synthesis of Biodiesel from Castor Oil and Linseed Oil in Supercritical Fluids, Industrial and Engineering Chemistry Research, 46(1), 1(2007). 

  27. S. Saka and D. Kusdiana, Biodiesel Fuelfrom Rapeseed Oil as Prepared in Supercritical Methanol, J. Fuel, 80(2), 225(2001). 

  28. N. Martini and S. Schell, Plant Oils as Fuels: "Present State of Science and Future Developments", Springer Verlag, Potsdam, pp.16-18, 2012. 

  29. C. Xu and T. Etcheverry, Hydro-liquefaction of Woody Biomass in Sub- and Supercritical Ethanol with Iron-based Catalysts, Fuel, 87(3), 335(2008). 

  30. G. Knothe, Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters, Fuel Process Technology, 86(10), 1059(2005). 

  31. H. Joshi, B. Moser, J. Toler, and T. Walker, Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters, Biomass Bioenergy, 34(1), 14(2010). 

  32. D. Kusdiana and S. Saka, Kinetics of Transesterification in Rapeseed Oil to Biodiesel Fuel as Treated in Supercritical Methano, Fuel, 81(5), 693(2001). 

  33. G. An, W. Ma, Z. Sun, Z. Liu, B. Han, and S. Miao, Preparation of Titania/carbon Nanotube Composites using Supercritical Ethanol and their Photocatalytic Activity for Phenol Degradation under Visible Light Irradiation, Carbon, 45(9), 1795(2007). 

  34. E. Bach, E. Cleve, and E. Schollmeyer, Past, Present and Future of Supercritical Fluid Dyeing Technology-an Overview, Rev. Prog. Color, 32(1), 88(2002). 

  35. K. Poulakis, M. Spee, G. Schneider, D. Knittel, H. Buschmann, and E. Schollmeyer, Dyeing of Polyester Fibers in Supercritical Carbon Dioxide, Chemiefasern Textilind, 41, 534(1991). 

  36. D. Knittel, W. Saus, and E. Schollmeyer, Dyeing of Textiles in Supercritical Carbon Dioxide, Textile Research J., 63(3), 135(1993). 

  37. W. Saus, D. Knittel, and E. Schollmeer, Application of Supercritical Carbon Dioxide in Finishing Processes, Textile Praxis Int., 84(4), 534(1993). 

  38. C. Tsai, H. Lin, and M. Lee, Fluid Phase Equilibria, Solubility of Disperse Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent, Fluid Phase Equilibria, 260(2), 287(2007). 

  39. J. Schnitzler, R. Eggers, and J. Mass, Transfer in Polymersin a Supercritical $CO_2$ -Atmosphere, Supercrit, Fluids, 16(1), 81(1999). 

  40. D. Bartle, A. Clifford, A. Jafar, and F. Shilstone, Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide, J. of Physical and Chemical Reference Data, 20(4), 713(1996). 

  41. C. Kirby and M. McHugh, Phase Behavior of Polymers in Supercritical Fluid Solvents, Chem. Rev., 99(2), 565 (1999). 

  42. B. Ping and J. Dai, Relationships between the Solubility of C. I. Disperse Red 60 and Uptake on PET in Supercritical $CO_2$ , J. Chem. Eng. Data, 50(3), 838(2005). 

  43. N. Brantley, S. Kazarian, and C. Eckert, In situ Spectroscopy of Polymers Subjected to Supercritical $CO_2$ : Plasticization and Dye Impregnation, J. Appl. Polym. Sci., 51(4), 491(2000). 

  44. H. Lin, C. Ho, M. Lee, and J. Supercrit, Solubility of Disperse Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent, Fluid Phase Equilibria, 260(2), 287(2004). 

  45. S. Park, D. I. Tuma, S. Kim, Y. Lee, and J. Shim, Sorption of C. I. Disperse Red 60 in Polystyrene and PMMA Films and Polyester and Nylon 6 Textilesin the Presence of Supercritical Carbon Dioxide, Korean J.Chem. Eng., 27(1), 299(2010). 

  46. E. Bach, E. Cleve, E. Schollmeyer, M. Bork, and P. Korner, The Dyeing of Natural Gibres with Reactive Disperse Dyes in Supercritical Carbon Dioxide, Dyes and Pigments, 56(1), 27(2003). 

  47. A. Ferri, M. Banchero, L. Manna, and S. Sicardi, Impregnation of PVP Microparticles with Ketoprofen in the Presence of Supercritical $CO_2$ , J. Supercrit. Fluids, 42(3), 378(2006). 

  48. M. Banchero, Supercritical Fluid Dyeing of Synthetic and Natural Textiles - A Review, Color. Technol., 129(1), 2(2013). 

  49. S. Liao, Dyeing Nylon-6,6 with Some Hydrophobic Reactive Dyes by Supercritical Processing, J. Polym. Res., 11(4), 285(2005). 

  50. M. Kraan, M. Fernandez, G. Woerlee, W. T. Veugelers, and G. Witkamp, Dyeing of Natural and Synthetic Textiles in Supercritical Carbon Dioxide with Disperse Reactive Dyes, J. Supercrit. Fluids, 40(3), 470(2007). 

  51. J. Long, Y. Ma, and J. Zhao, Investigations on the Level Dyeing of Fabrics in Supercritical Carbon Dioxide, J. Supercritical Fluids, 57(1), 80(2011). 

  52. M. Kraan, Process and Equipment Development for Textile Dyeing in Supercritical Carbon Dioxide, Ph.D. Thesis, Delft University of Technology, 2005. 

  53. A. Hou, B. Chen, J. Dai, and K. Zhang, Using Supercritical Carbon Dioxide as Solvent to Replace Water in Polyethylene Terephthalate(PET) Fabric Dyeing Procedures, J. Clean. Prod., 18(10-11), 1009(2010). 

  54. C. Tsai, H. Lin, and M. Lee, Solubility of C. I. Disperse Violet 1 in Supercritical Carbon Dioxide with or without Cosolvent, J. of Chemical and Engineering Data, 53(9), 2163(2008). 

  55. G. Woerlee, Dry-cleaning with High-pressure Carbon Dioxide-the Influence of Mechanical Action on Washing-results, J. of Supercritical Fluids, 27(1), 97(2003). 

  56. G. Huang, Y. Xing, and J. Dai, Proceeding International Conference Computer Distributed Control and Intelligent Environmental Monitoring, Changsa, pp.48-51, 2011. 

  57. P. Michel, Supercritical Fluid Applications: Industrial Developments and Economic Issues, Ind. Eng. Chem. Res., 39(12), 4531(2000). 

  58. G. Montero, D. Hinks, and J. Hooker, Reducing Problems of Cyclic Trimer Deposits in Supercritical Carbon Dioxide Polyester Dyeing Machinery, J. Supercrit. Fluids, 26(1), 47(2003). 

  59. E. Bach, E. Cleve, E. Schollmeyer, P. Nunnerich, and H. Dierkes, Experience with the Uhde $CO_2$ -Dyeing Plant on a Technical Scale Part 3: Quality of Polyester Dyed in Supercritical Carbon Dioxide, Melliand International, 10(1), 66(2004). 

  60. A. Schmidt, E. Bach, and E. Schollmeyer, The Dyeing of Natural Fibres with Reactive Disperse Dyesin Supercritical Carbon Dioxide, Dyes and Pigments, 56(1), 27(2003). 

  61. F. Bruhlmann, M. Leupin, K. Erismann, A. Fiechter, and J. Biotechnol, Enzymatic Degumming of Ramie Bast Fibers, J. Biotechnology, 76(1), 43(2000). 

  62. L. Zhou, Y. K. W.C. Yuen, and X. Zhou, Effect of Mercerisation and Crosslinking on the Dyeing Properties of Ramie Fabric, Coloration Technology, 119(3), 170 (2003). 

  63. K. Hirogaki, I. Tabata, K. Hisada, and T. Hori, An Investigation of the Morphological Changes in Poly(ethylene terephthalate) Fiber Treated with Supercritical Carbon Dioxide under Various Conditions, J. of Supercritical Fluids, 38(3), 399(2006). 

  64. E. Kim and E. Csiszaar, The Pretreatment of Ramie Fiber Material with Supercritical $CO_2$ Fluid, J. of Natural Fibers, 2(2005), 39(2012). 

  65. L. Zhou, K. Yeung, and W. Yuen, Effect of NaOH Mercerization on the Crosslinking of Ramie Yarn Using 1,2,3,4-Butanetetracarboxylic Acid, Textile Research J., 72(6), 531(2002). 

  66. H. Zheng,R. Zhang, X. Zhao, and T. Hori, The Pretreatment of Ramie Fiber Material with Supercritical $CO_2$ , Applied Mechanics and Materials, 236-237, 139(2012). 

  67. H. Adachi, K. Taki, S. Nagamine, A. Yusa, and M. Ohshima, Supercritical Carbon Dioxide Assisted Ectroless Plating on Thermoplastic Polymers, J. of Supercritical Fluids, 49(2), 265(2009). 

  68. W. Oh, J. Kim, and H. Kim, Improved Adhesion Property and Electromagnetic Interference Shielding Effectiveness of Electroless Cu-plated Layer on Poly(ethylene terephthalate) by Plasma Treatment, J. of Applied Polymer Science, 84(7), 1369(2002). 

  69. T. Siwach and O. Masahiro, Supercritical Carbon Dioxide-assisted Electroless Nickel Plating on Polypropylene-The Effect of Copolymer Blend Morphology on metal-Polymer Adhesion, J. of Supercritical Fluids, 85, 123 (2014). 

  70. X. Zhao, H. Kazumasa, T. Isao, S. Okubayashi, and T. Hori, A New Method of Producing Conductive Aramid Fibers using Supercritical Carbon Dioxide, Surface and Coatings Technology, 201(3-4), 628(2005). 

  71. I. Andrew, Cooper, Polymer Synthesis and Processing using Supercritical Carbon Dioxide, J. of Materials Chemistry, 10(2), 207(2000). 

  72. M. Valcarcel, M. Lopez, L. Arce,J. Garrido, and A. Talanta, Selective Extraction of Astaxanthin from Crustaceans by Use of Supercritical Carbon Dioxide, Talanta, 64(3), 726(2004). 

  73. D. Yu, S. Mu, L. Liu, and W. Wang, Preparation of Electroless Silver Plating on Aramid Fiber with Good Conductivity and Adhesion Strength, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 53(2015). 

  74. G. Montero, C. Smith, W. Hendrix, and D. Butcher, Supercritical Fluid Technology in Textile Processing: An Overview, Ind. Eng. Chem. Res., 39(12), 4806(2000). 

  75. A. Ferri, M. Banchero, L. Manna, and S. Sicardi, An Experimental Technique for Measuring High Solubilities of Dyesin SupercriticalCarbon Dioxide, J. of Supercritical Fluids, 30(1), 41(2004). 

  76. T. Dirk, M. Gerhard, and M. Schneider, High-pressure Solubility of Disperse Dyes in Near- and Supercritical Fluids: Measurements up to 100 MPa by a Static Method, J. of Supercritical Fluids, 13(1-3), 37(1998). 

  77. B. Cornelia, B. Wagner, and M. Schneider, High-pressure Solubility of 1,4-bis-(n-alkylamino)-9,10-anthraquinones in Near- and Supercritical Carbon Dioxide, J. of Supercritical Fluids, 13(1-3), 43(1998). 

  78. J. Beckman, Supercritical and Near-critical $CO_2$ in Green Chemical Synthesis and Processing, J. of Supercritical Fluids, 28(2-3), 121(2004). 

  79. E. Bacha, E. Cleve, J. Schuttken, E. Schollmeyer, and W. Rucker, Correlation of Solubility Data of Azo Disperse Dyes with the Dye Uptake of Poly(ethyleneterephthalate) Fibresin Supercritical Carbon Dioxide, Coloration Technology, 117(1), 13(2006). 

  80. Y. Iwai, M. Uno, H. Nagano, and Y. Arai, Measurement of Solubilities of Palmitic Acid in Supercritical Carbon Dioxide and Entrainer Effect of Water by FT-IR Spectroscopy, Coloration Technology, 28(2-3), 13(2004). 

  81. R. Tabaraki, T. Khayamian, and A. A. Ensafi, Wavelet Neural Network Modeling in QSPR for Prediction of Solubility of 25 Anthraquinone Dyes at Different Temperatures and Pressuresin Supercritical Carbon Dioxide, J. Mol. Graph. Model., 25(1), 46(2006). 

  82. R. Tabaraki, T. Khayamian, and A. A. Ensafi, Solubility Prediction of 21 Azo Dyesin Supercritical Carbon Dioxide Using Wavelet Neural Network, Dye. Pigment., 73(2), 230(2007). 

  83. A. Tarasova, F. Burden, J. Gasteiger, and A. D. Winkler, Robust Modelling of Solubility in Supercritical Carbon Dioxide Using Bayesian Methods, J. Mol. Graph. Model., 28(7), 593(2010). 

  84. J. S. Sanchez, M. T. F. Ponce, L. Casas, C. Mantell, J. Martinez, and I. Ossa, Impregnation of Polyester Fibers in Supercritical Carbon Dioxide, Applied Polymer Science, 128, 208(2017). 

  85. H. Sung and J. Shim, Solubility of C. I. Disperse Red 60 and C.I. Disperse Blue 60 in Supercritical Carbon Dioxide, J. of Chemical and Engineering Data, 44(5), 985 (1999). 

  86. I. Tabata, J. Lyu, S. Cho, and T. Hori, Relationship Between the Solubility of Disperse Dyes and Equilibrium Dye Adsorption in Supercritical Fluid Dyeing, Color Technol, 117(6), 346(2001). 

  87. T. Hori, K. Hirogaki, and I. Tabata, Present Situation of Supercritical Fluid Dyeing and Finishing, 1st International Symposium on Supercritical $CO_2$ Dyeing and Finishing, Daegu, pp.1-3, 2018. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로