$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

마이크로웨이브-질산침출을 이용한 금 정광으로부터 페널티 원소 제거 및 금 품위 향상 연구
A Study on the Removal of Penalty Elements and the Improvement of Gold Contents from Gold Concentrate Using Microwave-nitric Acid Leaching 원문보기

韓國鑛物學會誌 = Journal of the Mineralogical Society of Korea, v.32 no.1, 2019년, pp.1 - 14  

김현수 (조선대학교 에너지자원공학과) ,  푸레브 오윤빌렉 (조선대학교 에너지자원공학과) ,  박천영 (조선대학교 에너지자원공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 금 정광에 함유된 비소(As)비스무스(Bi)와 같은 페널티 원소(penalty elements)를 제거하기 위한 목적으로 마이크로웨이브-질산침출을 이용하였다. 또한, 금 정광 시료로부터 금 함량을 증가시키고자 하였다. 침출조건은 페널티 원소의 제거를 향상시키기 위해 질산농도, 침출시간 그리고 고액비를 변화하였다. 실험결과 고체-잔류물에서 시료무게 감소율, 비소와 비스무스의 제거율 그리고 금 함량은 질산농도와 침출시간이 증가할수록 그리고 고액비가 감소할수록 증가하였다. 최대 비소와 비스무스 제거율 및 금 함량이 얻어지는 침출조건은 질산용액의 농도 6 M, 침출시간 5분이었다. 이때, 고체-잔류물 시료의 무게 감소는 87 %, 비소 제거율은 98.23 %, 비스무스는 거의 제거(100 %)되었고 금 함량은 81.36 g/t에서 487.32 g/t으로 증가하였다. 고체-잔류물을 XRD로 분석한 결과, 질산농도가 증가할수록 황철석 피크들은 사라지고 반면에, 원소 황의 피크들이 증가하였다.

Abstract AI-Helper 아이콘AI-Helper

This study used microwave-nitric acid leaching with the aim of removing penalty elements such as As and Bi. Moreover, enhanced gold content from the gold concentrate sample. The leaching conditions were changed: leaching time, nitric acid concentrations and solid-liquid ratio; In order to improve th...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
금의 정제에서 페널티 원소인 비소와 비스무스가 얼마나 포함되어 있으면 패널티를 부과하는가? 수십 혹은 수백 톤의 정광을 먼 거리의 제련소까지 운반하다 보니 운반 경비가 막대하게 소요된다. 또한, 금 정광이나 구리 정광 등에 비소와 비스무스가 각각 2,000, 500ppm 이상으로 포함되어 있으면 페널티(penalty)가 부과되고 있다(Tongamp et al., 2009; Celep et al.
arsenian pyrite란 무엇인가? 현재, 우리나라에서는 비소를 함유하는 황철석, 즉 arsenian pyrite로 구성된 금 정광을 소규모 광산에서 제련소로 납품하고 있다. 수십 혹은 수백 톤의 정광을 먼 거리의 제련소까지 운반하다 보니 운반 경비가 막대하게 소요된다.
전자현미경을 사용해도 금을 관측하기 어려운 이유는 무엇인가? , 2008). 즉, 금이 황철석과 황비철석에 극 미립크기로 존재하기 때문에 현미경이나 심지어 전자현미경에서 조차 금을 관찰하기 어렵다. 그리고 금을 다량 함유한 황철석에는 항상 비소가 포함되어 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (50)

  1. Al-Harahsheh, M., Kingman, S., Hankins, N., Somerfield, C., Bradshaw, S., and Louw, W. (2005) The influence of microwaves on the leaching kinetics of chalcopyrite. Minerals Engineering, 1259-1268. 

  2. Alp, I., Celep, O., and Deveci, H. (2010) Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation. JOM, 62, 41-44. 

  3. Amankwah, R.K. and Pickles, C.A. (2009) Microwave roasting of a carbonaceous sulphidic gold concentrate. Minerals Engineering, 22, 1095-1101. 

  4. Ashley, P.M., Creagh, C.J., and Ryan, C.G. (2000) Invisible gold in ore and mineral concentrates from the Hillgrove gold-antimony deposits, NSW, Australia. Mineralium Deposita, 35, 285-301. 

  5. Awe, S.A., Sundkvist, J.E., Bolin, N.J., and Sandstrom, A. (2013) Process flowsheet development for recovering antimony from Sb-bearing copper concentrates. Minerals Engineering, 49, 45-53. 

  6. Aylmore, M. and Jaffer, A. (2012) Evaluating process options for treating some refractory ores. Alta 2012 International gold Conference, Annual gathering of the global Gold Ore, Processing Industry May 31-June 1, 2012, Burswood Convention Centre, Perth, Western Australia. 

  7. Aylmore, M.G. (2001) Treatment of a refractory gold-copper sulfide concentrate by copper ammoniacal thiosulfate leaching. Minerals Engineering, 14, 615-637. 

  8. Aylmore, M.G. and Klerk, L.W. (2013) Conditions and design considerations for maximising recoverable gold in roasting of refractory gold ores. World Gold Conference/Brisbane, QLD, 26-29 September 2013, 14p. 

  9. Batchelor, A.R., Jones, D.A., Plint, S., and Kingman, S.W. (2015) Deriving the ideal ore texture for microwave treatment of metalliferous ores. Minerals Engineering, 84, 116-129. 

  10. Bayca, S.U. (2013) Microwave radiation leaching of colemanite in sulfuric acid solutions. Separation and Purification Technology, 105, 24-32. 

  11. Celep, O., Alp, I., and Deveci, H. (2011) Improved gold and silver extraction from a refractory antimony ore by pretreatment with alkaline sulphide leach. Hydrometallurgy, 105, 234-239. 

  12. Chen, T.T., Cabri, L.J., and Dutrizac, J.E. (2002) Characterizing gold in refractory sulfide gold ores and residues. JOM, December, 20-22. 

  13. Coetzee, L.L., Theron, S.J., van der Merwe, J.D., and Stanek, T.A. (2011) Modern gold deportments and its application to industry. Minerals Engineering, 24, 565-575. 

  14. Deditius, A.P., Utsunomiya, S., Penock, D., Ewing, R.C., Ramana, C.V., Becker, U., and Kesler, S.E. (2008) A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72, 2919-2939. 

  15. Xia, D.K. and Pickles, C.A. (1999) Microwave caustic leaching of electric arc furnance dust. Mineral Engineering, 13, 79-94. 

  16. Droppert, D.J. and Shang, Y. (1995) The leaching behaviour of nickeliferous pyrrhotite concentrate in hot nitric acid. Hydrometallurgy, 39, 169-182. 

  17. Dunn, J.G. and Chamberlain, A.C. (1997) The recovery of gold from Refractory arsenopyrite concentrates by pyrolysis-Oxidation. Minerals Engineering, 10, 919-928. 

  18. Elmahdy, A.M., Farahat, M., and Hirajima, T. (2016) Comparsion between the effect of microwave irradiation and conventional heat treatments on the magnetic properties of chalcopyrite and pyrite. Advanced Powder Technology, 27, 2424-2431. 

  19. Fair, K.J. and Basa, F.J. (1989) Treatment of Agnico Eagle's silver-bearing flotation concentrate by the nitrox process. Processing of Complex Ores, 20-24, 411-420. 

  20. Fair, K.K., Schneider, J.C., and van Weert, G. (1987) Options in the nitrox orocess. Proceedings of the Metallurgical Society of the Canadian Institute of Mining and Metallurgy, 279-291. 

  21. Fleet, M.E. and Mumin, A.H. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis. American Mineralogist, 82, 182-193. 

  22. Habashi, F. (1973) Action of nitric acid on chalcopyrite. Tranactions, 254, 224-228. 

  23. Haque, K.E. (1999) Microwave energy for mineral treatment processes - A brief review. International Journal of Mineral Processing, 57, 1-24. 

  24. Havlik, T. (2010) Microwave leaching of chalcopyrite-possible improvement in hydrometallurgy. Metal, 64, 25-28. 

  25. Hough, R.M., Noble, R.R.P., and Erich, M. (2011) Natural gold nanoparticles. Ore Geology Reviews, 42, 55-61. 

  26. Huang, J.H. and Rowson, N.A. (2002) Hydrometallurgical decomposition of pyrite and marcasite in a microwave field. Hydrometallurgy, 64, 169-179. 

  27. Kadioglu, Y., Karaca, S., and Bayrakceken, S. (1995) Kinetics of pyrite oxidation in aqueous suspension by nitric acid. Fuel processing Technology, 41, 273-287. 

  28. Kim, C.S. and Choi, S.G. (2009) Haenam-Jindo area, Southwestern Korea. Resource Geology, 59, 415-421. 

  29. Kingman, S.W., Corfield, G.M., and Rowson, N.A. (1999) Effect of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore. Magnetic and Electrical Separation, 9, 131-148. 

  30. Lane, D.L., Cook, N.J., Grano, S.R., and Ehring, K. (2016) Selective leaching of penalty elements from copper concentrates: A review. Minerals Engineering, 98, 110-121. 

  31. Maddox, L.M., Bancroft, G.M., Scaini, M.J., and Lorimer, J.W. (1998) Invisible gold: Comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist, 83, 1240-1245. 

  32. Marsden, J. and House, I. (1992) The Chemistry of Gold Extraction. Ellis Horwood, 597p. 

  33. Martinez, LL., Segarra, M., Fernandez, M., and Espiell, F. (1993) Kinetics of the dissolution of pure silver and silver-gold alloy in nitric acid solution. Metallurgical Transactions B, 24B, 827-837. 

  34. Mooiman, M.B. and Simpson, L. (2016) Refining of gold-and silver-bearing Dore, In; Adams, M.K.(eds) Gold Ore Processing Project Development Operation, Second Edition, Elsevier, 857-870pp. 

  35. Morishita, Y., Shimada, N., and Shimada, K. (2008) Invisible gold and arsenic in pyrite from the high-grade Hishikari gold deposit, Japan. Applied Surface Science, 255, 1451-1454. 

  36. Morishita, Y., Shimada, N., and Shimada, K. (2018) Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geology Reviews, 95, 79-93. 

  37. Motasemi, F. and Afzal, M.T. (2013) A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28, 317-330. 

  38. Nan, X.Y., Cai, X., and Kong, J. (2014) Pretreatment process on refractory gold ores with As. ISIJ International, 54, 543-547. 

  39. Paktunc, D., Kingston, D., and Pratt, A. (2006) Distribution of gold in pyrite and in products of its transformation resulting from roasting of refractory gold ore. The Canadian Mineralogist, 44, 213-227. 

  40. Palenink, C., Utsunomiya, S., Reich, M., Kes;er, S.E., Wang, L., and Ewing, R.C. (2004) "Invisible" gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89, 1359-1366. 

  41. Reich, M., kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L., and Ewing, R. (2005) Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781-2796. 

  42. Simon, G., Huang, H., penner-Hahn, J.E., Kesler, S.E., and Kao, L.S. (1999) Oxidation state of gold and arsenic in gold-bearing arsenican pyrite. American Mineralogist, 84, 1071-1079. 

  43. Sung, Y.H., Brugger, J., Viobanu, C.L., Pring, A., Skinner, W., and Nugus, M. (2009) Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, eastern goldfields province, western Australia. Miner Deposita, 44, 765-791. 

  44. Swash, P.M. and Ellis, P. (1986) The roasting of arsenical gold ores: A mineralogical perspective. Extractive Metallurgy of Gold, a Mineralogical Perspective. Gold 100. Proceedings of the International Conference on Gold. Volume 2: Extractive Metallurgy of Gold. Johannesburg, Saimm, 235-257. 

  45. Thomas, K.G. and Cole, A.P. (2005) Roasting developments-especially oxygenated roasting, In; Mike, D. (eds), Developments in Mineral Processing, 15, 403-432. 

  46. Tongamp, W., Takasaki, Y., and Shibayama, A. (2009) Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media. Hydrometallurgy, 213-218. 

  47. Veres, J., jakabsky, S., and Lovas, M. (2010) Comparison of conventional and microwave assisted leaching of zinc from the basic oxygen furnace dust. Minerallia Slovaca, 42, 369-374. 

  48. Wen, T., Zhao, Y., Xiao, Q., Ma, Q., Kang, S., Li, H., and Song, S. (2017) Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results in Physics, 7, 2594-2600. 

  49. Yoshikawa, N., Xie, G., Cao, Z., and Louzguine, D.V. (2012) Microwavestructure of selectively heated (hot spot) region in Fe3O4 powder compacts by microwave irradiation. Journal of the European Ceramic Society, 32, 419-424. 

  50. Zhou, Y., Wang, W., Sun, J., Ma, X., Song, Z., Zhao, X., and Mao, Y. (2017) Direct calorimetry study of metal discharge heating effects induced by microwave irradiation. Applied Thermal Engineering, 125, 386-393. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로