$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

증발산 상호보완이론을 이용한 가뭄해석
A drought assessment using the generalized complementary principle of evapotranspiration 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.52 no.5, 2019년, pp.325 - 335  

전종안 (APEC 기후센터 기후사업본부) ,  김대하 (APEC 기후센터 기후사업본부)

초록
AI-Helper 아이콘AI-Helper

본 연구의 목적은 일반 상호보완이론(Generalized Complementary Relationship, GCR)을 활용하여 실제증발산량을 추정하고, 추정한 실제증발산량기반 가뭄지수로부터 공통경계미국(Conterminous U.S., CONUS)에 대한 1895~2016년 기간 동안의 가뭄을 해석하는 것이다. GCR 이론으로부터 추정한 $ET_a$는 North American Land Data Assimilation System (NLDAS-2) Noah 지면모형(Land surface models)으로 산정한 $ET_a$와 비교 검증하였다. 또한, GCR로부터 증발산 부족량(ET Deficit)을 산정하고 이를 표준정규화하여 공통경계미국에 대해 Standardized Evapotranspiration Deficit Index (SEDI)를 산정하였다. 이렇게 산정한 SEDI는 Standard Precipitation Index (SPI)와 비교하였다. 본 연구로부터 GCR 기반 $ET_a$는 NLDAS-2 Noah모형의 $ET_a$보다 다소 크게 추정하는 경향을 보였다. SEDI와 SPI의 상관성은 지속시간이 클수록 더 크게 나타났다. 강수와 토양수분의 자료를 사용하지 않는 GCR이론으로부터 비교적 정확한 $ET_a$을 추정할 수 있으며, 증발산 기반인 SEDI가 적절한 가뭄해석에 이용될 수 있을 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

To characterize historical droughts in the conterminous United States (CONUS), we estimated the actual evapotranspiration ($ET_a$) in the CONUS using the generalized complementary relationship (GCR) for 1895-2016. The $ET_a$ estimates were compared against simulations from the ...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구의 목적은 실제증발산량을 활용한 가뭄지수 (Standardized Evapotranspiration Deficit Index, SEDI)를 산정하고 공통경계미국(Conterminous U.S., CONUS)에 적용하여 좀 더 신뢰할 수 있는 가뭄해석 방법을 제안하는 것이다.
  • , 2016; Han and Tian, 2018). 본 연구에서는 Szilagyi et al. (2017)가 제시한 일반 상호보완관계(GCR)로써, Brutsaert (2015)가 제시한 일반이론을 개선시킨 이론이다. Brutsaert (2015)가 ETa와 ETp사이의 네 경계조건으로 (X=0, y=0), (X=1, y=1), (X=0, dy/dX=0), (X=1, dy/dX=1)를 제시한 바 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
가뭄이란? 가뭄은 반복적인 자연재해로써 생태계 수문순환에 불균 형을 초래하기도 한다(Dai, 2011; Heim, 2002). 일반적으로 가뭄은 비정상적으로 부족한 강수량에서 시작되는 것으로 간주되고, 사회나 생태계의 수요보다 공급할 수 있는 수량이 작은 상태로 정의된다(Wilhite, 2000). 세계기상기구(World Meteorological Organization; WMO)는 가뭄을 “비정상적으로 지속되는 강수부족”으로 정의하고 있는데(WMO, 1992), 이와 같은 연장선에서 가뭄에 대한 많은 연구가 강수 부족을 중심으로 해석하는데 국한되어 있다(예, Strzepek et al.
GCR의 장점은 무엇인가? , 2012). GCR은 지면모형에 비해 훨씬 단순한 모형이지만, ETa의 추정에 있어서 지면모형이 고려하지 못하는 대규모 관개활동 등이 반영 될 수 있는 장점이 있다(Szilagyi, 2018). 지면모 형과 GCR이론에 의해 추정한 ETa 사이에 Pearson r=0.
강수량이 실제증발산량에 어떤 영향을 주는가? 특히, 지표수문모형을 이용해 실제증발산량을 추정하는 경우, 침투, 유출과 같은 강수에 영향을 직접적으로 받는 지표수문과정이 개입되기 때문에 강수량 자료의 사용을 피할 수 없다(Kim and Rhee, 2016). 따라서 실제증발산량 추정치는 강수 자료 특성에 직접적 영향을 받게 되며, 기후 예측자료가 사용될 경우, 추정된 실제증발산량은 강수의 낮은 예측성으로 인해 그 사용성이 매우 제한적일 수밖에 없다(Gao et al., 2010).
질의응답 정보가 도움이 되었나요?

참고문헌 (56)

  1. Abatzoglou, J. (2018). GRIDMET Datasets, accessed 15 February 2018, . 

  2. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper No. 56, Food and Agriculture Organization of the United Nations, Rome. 

  3. Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., and Kustas, W. P. (2011). "Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the conterminous United States." Journal of Climate, Vol. 24, No. 8, pp. 2025-2044. 

  4. Begueria, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B. (2014). "Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring." International Journal of Climatology, Vol. 34, pp. 3001-3023. 

  5. Bouchet, R. J. (1963). "Evapotranspiration reelle et potentielle, signification climatique." International Association of Scientific Hydrology Publication, Vol. 62, pp. 134-142. 

  6. Brutsaert, W. (2015). "A generalized complementary principle with physical constraints for land-surface evaporation." Water Resources Research, Vol. 51, No. 10, pp. 8087-8093. 

  7. Burnash, R. J. C. (1995). The NWS river forecast system-catchment modeling. in Computer Models of Watershed Hydrology, edited by V. P. Singh, Water Resources Publications, Littleton, Colo., pp. 311-366. 

  8. Cammalleri, C., Micale, F., and Vogt, J. (2016). "A novel soil moisture-based drought severity index (DSI) combining water deficit magnitude and frequency." Hydrological Processes, Vol. 30, No. 2, pp. 289-301, doi: 10.1002/hyp.10578. 

  9. Changnon, S. A., Kunkel, K. E., and Changnon, D. (2007). Impacts of recent climate climate anomalies. edited by Losers and Winners, Illinois State Water Survey, Illinois Department of Natural Resources and University of Illinois at Urbana-Champaign, Champaign, Illinois. 

  10. Chun, J. A., Baik, J., Kim, D., and Choi, M. (2018). "A comparative assessment of SWAT-model-based evapotranspiration against regional-scale estimates." Ecological Engineering, Vol. 122, pp. 1-9. 

  11. Crago, R., Szilagyi, J., Qualls, R., and Huntington, J. (2016). "Rescaling the complementary relationship for land surface evaporation." Water Resources Research, Vol. 52, No. 11, pp. 8461-8471. 

  12. Dai, A. (2010). "Drought under global warming: a review." Wiley Interdisciplinary Reviews: Climate Change, Vol. 2, No. 1, pp. 45-65. 

  13. Dai, A. (2011). "Characteristics and trends in various forms of the palmer drought severity index during 1900-2008." Journal of Geophysical Research, Vol. 116, D12115, doi:10.1029/2010JD015541. 

  14. Dai, A. (2013). "Increasing drought under global warming in observations and models." Nature Climate Change, Vol. 3, pp. 52-58, doi:10.1038/nclimate1633. 

  15. Dracup, J. A., Lee, K. S., and Paulson Jr., E. G. (1980). "On the definitions of droughts." Water Resources Research, Vol. 16 No. 2, pp. 297-302. 

  16. Ek, M. B., Mitchell, K. E., Lin, Y., Rodgers, E., Grunman, P., Koren, V., Gayno, G., and Tarpley, J. D. (2003). "Implementation of noah land surface model advances in the national centers for environmental prediction operational mesoscale eta model." Journal of Geophysical Research, Vol. 108, No. D22, pp. 8851. 

  17. Folger, P., and Cody, B. A. (2014). Drought in the United States: Causes and current understanding. Congressional Research Service, Report 7-5700, R43407. Available at http://www.crs.gov. 

  18. Gao, H., Tang, Q., Ferguson, C. R., Wood, E. F., and Lettenmaier, D. P. (2010). "Estimating the water budget of major U.S. river basins via remote sensing." International Journal of Remote Sensing, Vol. 31, No. 14, pp. 3955-3978. 

  19. Guo, Z., Dirmeyer, P. A., Koster, R. D., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., Mcavaney, B., Mcgregor, J. L., Mitchell, K., Mocko, D., Oki, T., Oleson, K. W., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T. (2006). "GLACE: The global land-atmosphere coupling experiment. Part II: Analysis." Journal of Hydrometeorology, Vol. 7, pp. 611-625. 

  20. Han, S., and Tian, F. (2018). "Derivation of a sigmoid generalized complementary function for evaporation with physical constraints." Water Resources Research, Vol. 54, No. 7, pp. 5050-5068. 

  21. Heim, R. R., Jr. (2002). "A review of twentieth-century drought indices used in the United States." Bulletin of the American Meteorological Society, Vol. 83, pp. 1149-1165. 

  22. Hobbins, M. T., Wood, A., McEvoy, D. J., Huntington, J. L., Morton, C., Anderson, M., and Hain, C. (2016). "The evaporative demand drought index: Part I-Linking drought evolution to variations in evaporative demand." Journal of Hydrometeorology, Vol. 17, pp. 1745-1761. 

  23. Kahler, D. M., and Brutsaert, W. (2006). "Complementary relationship between daily evaporation in the environment and pan evaporation." Water Resources Research, Vol. 42, pp. W05413. 

  24. Kangas, R. S., and Brown, T. J. (2007). "Characteristics of US drought and pluvials from a high-resolution spatial dataset." International Journal of Climatology, Vol. 27, No. 10, pp. 1303-1325. 

  25. Kim, D., and Rhee, J. (2016). "A drought index based on actual evapotranspiration from the Bouchet hypothesis." Geophysical Research Letters, Vol. 43, No. 19, pp. 10277-10285. 

  26. Koster, R. D., and Suarez, M. J. (1996). Energy and water balance calculations in the mosaic LSM. NASA Technical Memorandum, NASA TM-104606, 9, 60, Goddard Space Flight Cent, Greenbelt, MD. 

  27. Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T., (2004). "Regions of strong coupling between soil moisture and precipitation." Science, Vol. 5687, No. 10, pp. 1138-1140. 

  28. Koster, R. D., Guo, Z., Dirmeyer, P. A., Bonan, G., Chan, E., Cox, P., Davies, H., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Hsuan Lu, C., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K. W., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T. (2006). "GLACE: The global land-atmosphere coupling experiment. Part I: Overview." Journal of Hydrometeorology, Vol. 7, pp. 590-610. 

  29. Lhomme, J.-P. (1997). "A theoretical basis for the Priestley-Taylor coefficient." Boundary-Layer Meteorology, Vol. 82, pp. 179-191. 

  30. Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J. (1994). "A simple hydrologically based model of land surface water and energy fluxes for GCMs." Journal of Geophysical Research, Vol. 99, No. D7, pp. 14415-14428. 

  31. McEvoy, D. J., Huntington, J. L., Hobbins, M. T., Wood, A., Morton, C., Anderson, M., and Hain, C. (2016). "The evaporative demand drought index. Part II: CONUS-wide assessment against common drought indicators." Journal of Hydrometeorology, Vol. 17, pp. 1763-1779. 

  32. McKee, T. B. N., Doesken, J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." In Proceedings of Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, CA., pp. 179-184. 

  33. Monteith, J. L. (1965). "Evaporation and the environment." 19th Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-234. 

  34. Nalbantis, I. (2008). "Evaluation of a hydrological drought index." European Water, Vol. 23, No. 24, pp. 67-77. 

  35. National Aeronautics and Space Administration (NASA) (2018). LDAS (Land Data Assimilation System), accessed 10 August 2018, . 

  36. Palmer, W. C. (1965). Meteorological drought. U.S. Weather Bureau, Research Paper 45, pp. 65. 

  37. Penman, H. L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society London A, Vol. 194, No. S, pp. 120-145. 

  38. Priestley, C. H., and Taylor, R. J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. 

  39. PRISM Climate Group (2018). Northwest Alliance for Computational Science and Engineering. PRISM Climate Data, accessed 15 February 2018, . 

  40. Sheffield, J., and Wood, E. F. (2008). "Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations." Climate Dynamics, Vol. 31, No. 1, pp. 79-105. 

  41. Sheffield, J., Wood, E. F., and Roderick, M. L. (2012). "Little change in global drought over the past 60 years." Nature, Vol. 491, pp. 435-438. 

  42. Sridhar, V., and Nayak, A. (2010). "Implications of climate-driven variability and trends for the hydrologic assessment of the Reynolds Creek Experimental Watershed, Idaho." Journal of Hydrology, Vol. 385, No. 1-4, pp.183-202. https://doi.org/10.1016/j.jhydrol.2010.02.020. 

  43. Steduto, P., Hsiao, T. C., Fereres, E., and Raes, D. (2012). Crop Yield Response to Water. FAO Irrigation and Drainage Paper No. 66, Food and Agriculture Organization of the United Nations, Rome. 

  44. Strzepek, K., Yohe, G., Neumann, J., and Boehlert, B. (2010). "Characterizing changes in drought risk for the United States from climate change." Environmental Research Letters, Vol. 5, 044012, pp. 1-9. 

  45. Szilagyi, J. (2018). "Anthropogenic hydrological cycle disturbance at a regional scale: State-wide evapotranspiration trends (1979-2015) across Nebraska, USA." Journal of Hydrology, Vol. 557, pp. 600-612. 

  46. Szilagyi, J., Crago, R., and Qualls, R. (2017). "A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology." Journal of Geophysical Research: Atmospheres, Vol. 122, No. 1, pp. 264-278. 

  47. Thornthwaite, C. W. (1948). "An approach toward a rational classification of climate." Geographical Review, Vol. 38, No. 1, pp. 55-94. 

  48. Trenberth, K. E., Branstator, G. W., and Arkin, P. A. (1988). "Origins of the 1988 North American Drought." Science, Vol. 242, No. 4886, pp. 1640-1645. 

  49. Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K.R., and Sheffield., J. (2014). "Global warming and changes in drought." Nature Climate Change, Vol. 4, pp. 17-22. 

  50. van der Ent, R. J., and Tuinenburg, O. A. (2017). "The residence time of water in the atmosphere revisited." Hydrology and Earth System Sciences, Vol. 21, pp. 779-790. 

  51. Vicente-Serrano, S. M., Begueria, S., and Lopez-Moreno, J. I. (2010). "A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index (SPEI)." Journal of Climate, Vol. 23, pp. 1696-1718. 

  52. Vicente-Serrano, S. M., Miralles, D. G., Dominguez-Castro, F., Azorin-Molina, C., Kenawy, A. E., McVicar, T. R., Tomas-Burguera, M., Begueria, S., Maneta, M., and Pena-Gallardo, M. (2018). "Global assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for drought analysis and monitoring." Journal of Climate, Vol. 31, pp. 5371-5393. 

  53. Wilhite, D. A. (2000). Drought as a natural hazard: Concepts and definitions. in D. A. Wilhite, Ed., Drought: A global assessment. Natural Hazards and Disasters Series. Routledge Publishers, U.K. 

  54. World Meteorological Organization (WMO) (1992). International meteorological vocabulary. WMO No.182, 2nd ed., pp. 784. 

  55. Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D. (2012). "Continentalscale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2(NLDAS-2): 1. Intercomparison and application of model products." Journal of Geophysical Research, Vol. 117, No. D3, D03109. 

  56. Yu, M., Cho, Y., Kim, T.-W., and Chae, H.-S. (2018). "Analysis of drought propagationusing hydrometeorological data: from meteorological drought oto agricultual drought." Journal Korea Water Resources Association, Vol. 51, No. 3, pp. 195-205(in Korean with English abstract). 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로