$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato 원문보기

The plant pathology journal, v.35 no.3, 2019년, pp.257 - 273  

Sahin-Cevik, Mehtap (Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology) ,  Sivri, Emine Dogus (Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology) ,  Cevik, Bayram (Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Plant Protection)

Abstract AI-Helper 아이콘AI-Helper

Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

성능/효과

  • The expression analyses of 20 selected cDNAs induced in response ToCV infection in tomato by RT-qPCR. (A) The expression of each gene was determined and normalized with β-actin used as the reference gene in 30 dpi in inoculated (ToCV) and mock inoculated (Control) plants. Changes in the expression of each gene are shown as normalized fold induction in the graph.
  • Changes in the expression of each gene are shown as normalized fold induction in the graph. (B) Heat map of the expression of selected cDNAs in response ToCV-inoculation (ToCV) and mock-inoculation (Control).
본문요약 정보가 도움이 되었나요?

참고문헌 (72)

  1. Abeles, F. B. M., Morgan, P. W. and Saltveit, M. E. 1992. Ethylene in plant biology. 2nd ed. Academic Press, San Diego, CA, USA. 414 pp. 

  2. Afzal, A. J., Wood, A. J. and Lightfoot, D. A. 2008. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol. Plant-Microbe Interact. 21:507-517. 

  3. Akdura, N. and Cevik, B. 2011. Molecular characterization and biological of Tomato chlorosis virus (ToCV) in tomato production areas in Western Mediterranean region. Ph.D. thesis. Suleyman Demirel University, Isparta, Turkey (in Turkish). 

  4. Alam, S. B. and Rochon, D. A. 2016. Cucumber necrosis virus recruits cellular heat shock protein 70 homologs at several stages of infection. J. Virol. 90:3302-3317. 

  5. Alfenas-Zerbini, P., Maia, I. G., Favaro, R. D., Cascardo, J. C., Brommonschenkel, S. H. and Zerbini, F. M. 2009. Genomewide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol. Plant-Microbe Interact. 22:352-361. 

  6. Amaral, D. O. J., Almeida, C. M. A., Correia, M. T. S., Lima, V. L. M. and da Silva, M. V. 2012. Isolation and characterization of chitinase from tomato infected by Fusarium oxysporum f. sp. lycopersici. J. Phytopathol. 160:741-744. 

  7. Barbosa, J. C., Costa, H., Gioria, R. and Rezende, J. 2011. Occurrence of Tomato chlorosis virus in tomato crops in five Brazilian states. Trop. Plant Pathol. 36:256-258. 

  8. Bi, G., Zhou, Z., Wang, W., Li, L., Rao, S., Wu, Y., Zhang, X., Menke, F. L. H., Chen, S. and Zhou, J. M. 2018. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30:1543-1561. 

  9. Bol, J. F., Linthorst, H. J. M. and Cornelissen, B. J. C. 1990. Plant pathogenesis-related proteins induced by virus infection. Annu. Rev. Phytopathol. 28:113-138. 

  10. Burstenbinder, K., Rzewuski, G., Wirtz, M., Hell, R. and Sauter, M. 2007. The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J. 49:238-249. 

  11. Catoni, M., Miozzi, L., Fiorilli, V., Lanfranco, L. and Accotto, G. P. 2009. Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by Tomato spotted wilt virus reveals organ-specific transcriptional responses. Mol. Plant-Microbe Interact. 22:1504-1513. 

  12. Caplan, J. L., Mamillapalli, P., Burch-Smith, T. M., Czymmek, K. and Dinesh-Kumar, S. P. 2008. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449-462. 

  13. Cevik, B., Kivrak, H. and Sahin-Cevik, M. 2019. Development of a graft inoculation method and a real-time RT-PCR assay for monitoring Tomato chlorosis virus infection in tomato. J. Virol. Methods 265:1-8. 

  14. Chen, T., Lv, Y., Zhao, T., Li, N., Yang, Y., Yu, W., He, X., Liu, T. and Zhang, B. 2013. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One 8:e80816. 

  15. Cipollone, R., Ascenzi, P. and Visca, P. 2007. Common themes and variations in the rhodanese superfamily. IUBMB Life 59:51-59. 

  16. Dalmon, A., Fabre, F., Guilbaud, L., Lecoq, H. and Jacquemond, M. 2009. Comparative whitefly transmission of Tomato chlorosis virus and Tomato infectious chlorosis virus from single or mixed infections. Plant Pathol. 58:221-227. 

  17. Dolja, V. V., Kreuze, J. F. and Valkonen, J. P. 2006. Comparative and functional genomics of closteroviruses. Virus Res. 117:38-51. 

  18. Doukhanina, E. V., Chen, S., van der Zalm, E., Godzik, A., Reed, J. and Dickman, M. B. 2006. Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J. Biol. Chem. 281:18793-18801. 

  19. Dovas, C. I., Katis, N. I. and Avgelis, A. D. 2002. Multiplex detection of Criniviruses associated with epidemics of a yellowing disease of tomato in Greece. Plant Dis. 86:1345-1349. 

  20. Fortes, I. M. and Navas-Castillo, J. 2012. Potato, an experimental and natural host of the crinivirus Tomato chlorosis virus. Eur. J. Plant Pathol. 134:81-86. 

  21. Freitas, D. M. S., Nardin, I., Shimoyama, N., Souza-Dias, J. A. C. and Rezende, J. A. M. 2012. First report of Tomato chlorosis virus in potato in Brazil. Plant Dis. 96:593. 

  22. Garcia-Cano, E., Navas-Castillo, J., Moriones, E. and Fernandez-Munoz, R. 2010. Resistance to Tomato chlorosis virus in wild tomato species that impair virus accumulation and disease symptom expression. Phytopathology 100:582-592. 

  23. Greeff, C., Roux, M., Mundy, J. and Petersen, M. 2012. Receptorlike kinase complexes in plant innate immunity. Front. Plant Sci. 3:209. 

  24. Hamid, R., Khan, M. A., Ahmad, M., Ahmad, M. M., Abdin, M. Z., Musarrat, J. and Javed, S. 2013. Chitinases: An update. J. Pharm. Bioallied Sci. 5:21-29. 

  25. Hanssen, I. M., Lapidot, M. and Thomma, B. P. 2010. Emerging viral diseases of tomato crops. Mol. Plant-Microbe Interact. 23:539-548. 

  26. Hanssen, I. M., van Esse, H. P., Ballester, A. R., Hogewoning, S. W., Parra, N. O., Paeleman, A., Lievens, B., Bovy, A. G. and Thomma, B. P. 2011. Differential tomato transcriptomic responses induced by pepino mosaic virus isolates with differential aggressiveness. Plant Physiol. 156:301-318. 

  27. Hanssen, I. M. and Lapidot, M. 2012. Major tomato viruses in the Mediterranean basin. Adv. Virus Res. 84:31-66. 

  28. Jacquemond, M., Verdin, E., Dalmon, A., Guilbaud, L. and Gognalons, P. 2009. Serological and molecular detection of Tomato chlorosis virus and Tomato infectious chlorosis virus in tomato. Plant Pathol. 58:210-220. 

  29. Kang, C. H., Jung, W. Y., Kang, Y. H., Kim, J. Y., Kim, D. G., Jeong, J. C., Baek, D. W., Jin, J. B., Lee, J. Y., Kim, M. O., Chung, W. S., Mengiste, T., Koiwa, H., Kwak, S. S., Bahk, J. D., Lee, S. Y., Nam, J. S., Yun, D. J. and Cho, M. J. 2006. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ. 13:84-95. 

  30. Karasev, A. V. 2000. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 38:293-324. 

  31. Kataya, A. R. A., Stavridou, E., Farhan, K. and Livieratos, I. C. 2008. Nucleotide sequence analysis and detection of a Greek isolate of Tomato chlorosis virus. Plant Pathol. 57:819-824. 

  32. Kawano, Y. and Shimamoto, K. 2013. Early signaling network in rice PRR-mediated and R-mediated immunity. Curr. Opin. Plant Biol. 16:496-504. 

  33. Kawano, Y., Kaneko-Kawano, T. and Shimamoto, K. 2014. Rho family GTPase-dependent immunity in plants and animals. Front. Plant Sci. 5:522. 

  34. Kong, F., Wang, J., Cheng, L., Liu, S., Wu, J., Peng, Z. and Lu, G. 2012. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum. Gene 499:108-120. 

  35. Levesque-Tremblay, G., Havaux, M. and Ouellet, F. 2009. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J. 60:691-702. 

  36. Li, X., Zhang, Y., Huang, L., Ouyang, Z., Hong, Y., Zhang, H., Li, D. and Song, F. 2014. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol. 14:166. 

  37. Li, Y., Kabbage, M., Liu, W. and Dickman, M. B. 2016. Aspartyl protease-mediated cleavage of BAG6 is necessary for autophagy and fungal resistance in plants. Plant Cell 28:233-247. 

  38. Liu, Y., Wang, G., Wang, Z., Yang, F., Wu, G. and Hong, N. 2012. Identification of differentially expressed genes in response to infection of a mild Citrus tristeza virus isolate in Citrus aurantifolia by suppression subtractive hybridization. Sci. Hortic. 134:144-149. 

  39. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DDC(T)) Method. Methods 25:402-408. 

  40. Louro, D., Accotto, G. P. and Vaira, A. M. 2000. Occurrence and diagnosis of Tomato chlorosis virus in Portugal. Eur. J. Plant Pathol. 106:589-592. 

  41. Lozano, G., Moriones, E. and Navas-Castillo, J. 2004. First report of sweet pepper (Capsicum annuum) as a natural host plant for Tomato chlorosis virus. Plant Dis. 88:224. 

  42. Lu, J., Du, Z. X., Kong, J., Chen, L. N., Qiu, Y. H., Li, G. F., Meng, X. H. and Zhu, S. F. 2012. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development. PLoS One 7:e43447. 

  43. Lucioli, A., Perla, C., Berardi, A., Gatti, F., Spano, L. and Tavazza, M. 2016. Transcriptomics of tomato plants infected with TYLCSV or expressing the central TYLCSV Rep protein domain uncover changes impacting pathogen response and senescence. Plant Physiol. Biochem. 103:61-70. 

  44. Miozzi, L., Napoli, C., Sardo, L. and Accotto, G. P. 2014. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS One 9:e89951. 

  45. Moon, S. Y. and Zheng, Y. 2003. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13:13-22. 

  46. Orfanidou, C. G., Dimitriou, C., Papayiannis, L. C., Maliogka, V. I. and Katis, N. I. 2014. Epidemiology and genetic diversity of criniviruses associated with tomato yellows disease in Greece. Virus Res. 186:120-129. 

  47. Orfanidou, C. G., Pappi, P. G., Efthimiou, K. E., Katis, N. I. and Maliogka, V. I. 2016. Transmission of Tomato chlorosis virus (ToCV) by Bemisia tabaci biotype Q and evaluation of four weed species as viral sources. Plant Dis. 100:2043-2049. 

  48. Papayiannis, L. C., Harkou, I. S., Markou, Y. M., Demetriou, C. N. and Katis, N. I. 2011. Rapid discrimination of Tomato chlorosis virus, Tomato infectious chlorosis virus and co-amplification of plant internal control using real-time RT-PCR. J. Virol. Methods 176:53-59. 

  49. Papenbrock, J., Guretzki, S. and Henne, M. 2011. Latest news about the sulfurtransferase protein family of higher plants. Amino Acids 41:43-57. 

  50. Pompe-Novak, M., Gruden, K., Baebler, S., Krecic-Stres, H., Kovac, M., Jongsma, M. and Ravnikar, M. 2005. Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.). Physiol. Mol. Plant Pathol. 67:237-247. 

  51. Sade, D., Eybishtz, A., Gorovits, R., Sobol, I. and Czosnek, H. 2012. A developmentally regulated lipocalin-like gene is overexpressed in tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance. Plant Mol. Biol. 80:273-287. 

  52. Sade, D., Shriki, O., Cuadros-Inostroza, A., Tohge, T., Semel, Y., Haviv, Y., Willmitzer, L., Fernie, A. R., Czosnek, H. and Brotman, Y. 2015. Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 11:81-97. 

  53. Sahin-Cevik, M. 2013. Identification and expression analysis of early cold-induced genes from cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Gene 512:536-545. 

  54. Sahin-Cevik, M. and Moore, G. A. 2006. Identification and expression analysis of cold regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Plant Mol. Biol. 62:83-97. 

  55. Sahin-Cevik, M., Cevik, B., Topkaya-Kutuk, B. and Yazici, K. 2017. Identification of drought-induced genes from the leaves of Rangpur lime (Citrus limon (L) Osbeck). J. Hortic. Sci. Biotechnol. 92:636-645. 

  56. Sahu, P. P., Rai, N. K., Chakraborty, S., Singh, M., Chandrappa, P. H., Ramesh, B., Chattopadhyay, D. and Prasad, M. 2010. Tomato cultivar tolerant to tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol. Plant Pathol. 11:531-544. 

  57. Sauter, M., Lorbiecke, R., Ouyang, B., Pochapsky, T. C. and Rzewuski, G. 2005. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-denosylmethionine. Plant J. 44:718-729. 

  58. Shahid, M. S., Kimbara, J., Onozato, A., Natsuaki, K. T. and Ikegami, M. 2015. Comparative analysis of gene expression of Ty-1 hybrid and non-hybrid tomatoes exposed to tomato yellow leaf curl virus strains. Aust. J. Crop Sci. 9:819-825. 

  59. Shi, C., Ingvardsen, C., Thummler, F., Melchinger, A. E., Wenzel, G. and Lubberstedt, T. 2005. Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol. Genet. Genomics 273:450-461. 

  60. Solorzano-Morales, A., Barboza, N., Hernandez, E., Mora-Umana, F., Ramirez, P. and Hammond, R. W. 2011. Newly discovered natural hosts of Tomato chlorosis virus in Costa Rica. Plant Dis. 95:497. 

  61. Tang, D., Wang, G. and Zhou, J. M. 2017. Receptor kinases in plant-pathogen interactions, more than pattern recognition. Plant Cell 29:618-637. 

  62. Trenado, H. P., Fortes, I. M., Louro, D. and Navas-Castillo, J. 2007. Physalis ixocarpa and P. peruviana, new natural hosts of Tomato chlorosis virus. Eur. J. Plant Pathol. 118:193-196. 

  63. Van de Poel, B. and Van Der Straeten, D. 2014. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants, more than just the precursor of ethylene! Front. Plant Sci. 5:640. 

  64. Vargas, J. A., Hernandez, E., Barboza, N., Mora, F. and Ramirez, P. 2011. First report of Tomato chlorosis virus infecting sweet pepper in Costa Rica. Plant Dis. 95:1482. 

  65. Virk, N., Liu, B., Zhang, H., Li, X., Zhang, Y., Li, D. and Song, F. 2012. Tomato SlMPK4 is required for resistance against Botrytis cinerea and tolerance to drought stress. Acta Physiol. Plant. 35:1211-1221. 

  66. Wang, J., Yu, W., Yang, Y., Li, X., Chen, T., Liu, T., Ma, N., Yang, X., Liu, R. and Zhang, B. 2015. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci. Rep. 5:16946. 

  67. Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., Wang, X. and Hou, Y. M. 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33:271-283. 

  68. Wintermantel, W. M., Wisler, G. C., Anchieta, A. G., Liu, H. Y., Karasev, A. V. and Tzanetakis, I. E. 2005. The complete nucleotide sequence and genome organization of Tomato chlorosis virus. Arch. Virol. 150:2287-2298. 

  69. Wintermantel, W. M. and Wisler, G. C. 2006. Vector specificity, host range, and genetic diversity of Tomato chlorosis virus. Plant Dis. 90:814-819. 

  70. Wisler, G. C., Li, R. H., Liu, H. Y., Lowry, D. S. and Duffus, J. E. 1998a. Tomato chlorosis virus: A new whitefly-transmitted, phloem-limited bipartite. Phytopathology 88:402-409. 

  71. Wisler, G. C., Duffus, J. E., Liu, H.-Y. and Li, R. H. 1998b. Ecology and epidemiology of whitefly-transmitted closteroviruses. Plant Dis. 82:270-280. 

  72. Yesilyurt, N. and Cevik, B. 2019. Genetic diversity and phylogenetic analyses of Tomato chlorosis virus isolates using the coat protein gene sequences. J. Plant Pathol. doi: 10.1007/s42161-019-00297-4 (in Press). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로