$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

바이오매스 유래 플랫폼 케미컬들에 대한 효과적인 합성 방법들
Efficient Synthetic Routes of Biomass-derived Platform Chemicals 원문보기 논문타임라인

공업화학 = Applied chemistry for engineering, v.30 no.3, 2019년, pp.280 - 289  

이르샤드 모비나 (강원대학교 에너지공학부(에너지화학공학전공)) ,  이성우 (강원대학교 에너지공학부(에너지화학공학전공)) ,  최은주 (강원대학교 에너지공학부(에너지화학공학전공)) ,  김정원 (강원대학교 에너지공학부(에너지화학공학전공))

초록
AI-Helper 아이콘AI-Helper

5-Hydroxymethylfurfural (HMF) 및 그 유도체들인 2,5-furandicarboxylic acid (FDCA)와 2,5-diformylfuran (DFF)는 넓은 응용 범위와 중요한 화학 물질 생산을 위한 좋은 대체 자원으로 인해 "잠자는 거인"으로 인식되고 있다. 본 미니-리뷰 논문은 과거부터 최근까지 이러한 바이오매스 유래 케미컬 플랫폼들에 대한 합성, 전환과 적용에 관해 간략히 소개한다. 많은 과학적 노력들이 자연 환경과 새로운 미래 세대를 보호하기 위해서 재생 가능한 재료들의 최대한 활용을 위한 자연친화적-적용가능한 방법들을 찾기 위한 노력이 지속적으로 행해지고 있다. 최선의 해결책 중 하나는 자연바이오매스로부터 플랫폼 케미컬을 개발하고 활용하는 것이다.

Abstract AI-Helper 아이콘AI-Helper

5-hydroxymethylfurfural (HMF) and its derivatives, 2,5-furandicarboxylic acid (FDCA) or 2,5-diformylfuran (DFF), are regarded as the "sleeping giants" owing to their wide range of applications and a good alternative source for the production of significant chemicals in almost all kind of industries....

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Moreover, DFF, another important derivative of HMF has its applications in the fields of polymerization, as intermediate, as a fungicide, ligands preparation, and as a cross-linking agent[12]. This mini-review focuses on the overview of various methods which has been employed since long for the conversion of biomass to HMF and then transformation of HMF to its derivatives particularly FDCA and DFF. Additionally, the potential applications of FDCA and DFF have also been outlined to provide the researchers a complete insight into these innovative compounds at one place.
본문요약 정보가 도움이 되었나요?

참고문헌 (128)

  1. R. M. de Almeida, J. Li, C. Nederlof, P. O'Connor, M. Makkee, and J. A. Moulijn, Cellulose conversion to isosorbide in molten salt hydrate media, Chem. Sus. Chem., 3, 325-328 (2010). 

  2. X. Ge, F. Xu, and Y. Li, Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives, Bioresour. Technol., 205, 239-249 (2016). 

  3. K. H. Kobayashi H. Shrotri A. Techikawara, and K. Fukuoka, Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst, Chem. Sci., 7, 692-696 (2016). 

  4. F. W. Lichtenthaler, Unsaturated O- and N-heterocycles from carbohydrate feedstocks, Acc. Chem. Res., 35, 728-737 (2002). 

  5. H. Wang, C. Zhu, D. Li, Q. Liu, J. Tan, C. Wang, C. Cai, and L. Ma, Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran, Renew. Sust. Energy Rev., 103, 227-247 (2019). 

  6. C. H. Christensen, J. Rass-Hansen, C. C. Marsden, E. Taarning, and K. Egeblad, The renewable chemicals industry, Chem. Sus. Chem., 1, 283-289 (2008). 

  7. J. J. Bozell and G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates, Green Chem., 12, 539-554 (2010). 

  8. A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, and C. A. M. Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem., 13, 754-793 (2011). 

  9. U. P. M. Kroger and K. D. Vorlop, A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose, Top. Catal., 13, 237-242 (2000). 

  10. G. A. Halliday, R. J. Young, and V. V. Grushin, One-pot, two-step, practical catalytic synthesis of 2,5-diformylfuran from fructose, Org. Lett., 5, 2003-2005 (2003). 

  11. A. Gandini, Polymers from renewable resources: A challenge for the future of macromolecular materials, Macromolecules., 41, 9491-9504 (2008). 

  12. A. S. Amarasekara, D. Green, and E. McMillan, Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)-salen catalysts, Catal. Commun., 9, 286-288 (2008). 

  13. A. F. V. Grote and B. Tollens, Untersuchungen uber kohlenhydrate. I. Ueber die bei Einwirkung von Schwefelsaure auf Zucker entstehende Saure (Levulinsaure), Justus Liebigs Ann. Chem., 175, 181-204 (1875). 

  14. B. F. M. Kuster, 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture, Starke (Starch), 42, 314-321 (1990). 

  15. G. Portillo Perez, A. Mukherjee, and M. J. Dumont, Insights into HMF catalysis, J. Ind. Eng. Chem., 70, 1-34 (2019). 

  16. I. K. M. Yu and D. C. W. Tsang, Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms, Bioresour. Technol., 238, 716-732 (2017). 

  17. S. Hu, Z. Zhang, Y. Zhou, B. Han, H. Fan, W. Li, J. Song, and Y. Xie, Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials, Green Chem., 10, 1280-1283 (2008). 

  18. A. S. Amarasekara, L. D. Williams, and C. C. Ebede, Mechanism of the dehydration of d-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at $150\;^{\circ}C$ : an NMR study, Carbohydr. Res., 343, 3021-3024 (2008). 

  19. M. E. Zakrzewska, E. B. Łukasik, and R. B. Lukasik, Ionic liquid-mediated formation of 5-hydroxymethylfurfural - a promising biomass-derived building block, Chem. Rev., 111, 397-417 (2011). 

  20. D. Liu and E. Y. X. Chen, Organocatalysis in biorefining for biomass conversion and upgrading, Green Chem., 16, 964-981 (2014). 

  21. R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, and J. G. de Vries, Hydroxymethylfurfural, a versatile platform chemical made from renewable resources, Chem. Rev., 113, 1499-1597 (2013). 

  22. Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu, and J. A. Dumesic, Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates, Nature, 447, 982-985 (2007). 

  23. Y. B. Huang, M. Y. Chen, L. Yan, Q. X. Guo, and Y. Fu, Nickel-tungsten carbide catalysts for the production of 2,5-Dimethylfuran from biomass-derived molecules, Chem. Sus. Chem., 7, 1068-1072 (2014). 

  24. Y. Liu, M. A. Mellmer, D. M. Alonso, and J. A. Dumesic, Effects of water on the copper-catalyzed conversion of hydroxymethylfurfural in tetrahydrofuran, Chem. Sus. Chem., 8, 3983-3986 (2015). 

  25. J. Shi, Y. Wang, X. Yu, W. Du, and Z. Hou, Production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over reduced graphene oxides supported Pt catalyst under mild conditions, Fuel, 163, 74-79 (2016). 

  26. Z. Yuan, Z. Zhang, J. Zheng, and J. Lin, Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates, Fuel, 150, 236-242 (2015). 

  27. H. Li, S. Saravanamurugan, S. Yang, and A. Riisager, Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts, Green Chem., 18, 726-734 (2016). 

  28. H. Wang, T. Deng, Y. Wang, X. Cui, Y. Qi, X. Mu, X. Hou, and Y. Zhu, Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural, Green Chem., 15, 2379-2383 (2013). 

  29. Y. Yang, M. M. Abu-Omar, and C. Hu, Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate, Appl. Energy, 99, 80-84 (2012). 

  30. D. Song, S. An, B. Lu, Y. Guo, and J. Leng, Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate, Appl. Catal. B, 179, 445-457 (2015). 

  31. G. D. Yadav and A. R. Yadav, Synthesis of ethyl levulinate as fuel additives using heterogeneous solid superacidic catalysts: Efficacy and kinetic modeling, Chem. Eng. J., 243, 556-563 (2014). 

  32. L. Peng, L. Lin, H. Li, and Q. Yang, Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts, Appl. Energy, 88, 4590-4596 (2011). 

  33. Q. N. Xia, Q. Cuan, X. H. Liu, X.Q. Gong, G. Z. Lu, and Y. Q. Wang, $Pd/NbOPO_{4}$ Multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans, Angew. Chem. Int. Ed., 53, 9755-9760 (2014). 

  34. K. Pupovac and R. Palkovits, $Cu/MgAl_{2}O_{4}$ as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation, Chem. Sus. Chem., 6, 2103-2110 (2013). 

  35. Z. Sun, S. Wang, X. Wang, and Z. Jiang, Lysine functional heteropolyacid nanospheres as bifunctional acid-base catalysts for cascade conversion of glucose to levulinic acid, Fuel, 164, 262-266 (2016). 

  36. N. A. S. Ramli and N. A. S. Amin, Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance, Appl. Catal. B, 163, 487-498 (2015). 

  37. Z. Sun, M. Cheng, H. Li, T. Shi, M. Yuan, X. Wang, and Z. Jiang, One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis, RSC Adv., 2, 9058-9065 (2012). 

  38. G. Lv, H. Wang, Y. Yang, T. Deng, C. Chen, Y. Zhu, and X. Hou, Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran, ACS Catal., 5, 5636-5646 (2015). 

  39. Z. Zhang, Z. Yuan, D. Tang, Y. Ren, K. Lv, and B. Liu, Iron oxide encapsulated by ruthenium hydroxyapatite as heterogeneous catalyst for the synthesis of 2,5-diformylfuran, Chem. Sus. Chem., 7, 3496-3504 (2014). 

  40. J. Nie, J. Xie, and H. Liu, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts, J. Catal., 301, 83-91 (2013). 

  41. A. Takagaki, M. Takahashi, S. Nishimura, and K. Ebitani, One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts, ACS Catal., 1, 1562-1565 (2011). 

  42. G. Yi, S. P. Teong, and Y. Zhang, Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst, Green Chem., 18, 979-983 (2016). 

  43. X. Liu, J. Xiao, H. Ding, W. Zhong, Q. Xu, S. Su, and D. Yin, Catalytic aerobic oxidation of 5-hydroxymethylfurfural over $VO^{2+}$ and $Cu^{2+}$ immobilized on amino functionalized SBA-15, Chem. Eng. J., 283, 1315-1321 (2016). 

  44. Z. Miao, Y. Zhang, X. Pan, T. Wu, B. Zhang, J. Li, T. Yi, Z. Zhang, and X. Yang, Superior catalytic performance of $Ce1-xBixO_{2}-{\delta}$ solid solution and $Au/Ce1-xBixO_{2}-{\delta}$ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution, Catal. Sci. Technol., 5, 1314-1322 (2015). 

  45. B. Liu, Y. Ren, and Z. Zhang, Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions, Green Chem., 17, 1610-1617 (2015). 

  46. J. Lewkowski, Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives, ARKIVOC, 17-54 (2001). 

  47. J. Zhang, J. Li, Y. Tang, L. Lin, and M. Long, Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass, Carbohydr. Polym., 130, 420-428 (2015). 

  48. M. Ventura, A. Dibenedetto, and M. Aresta, Heterogeneous catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to added value products in water, Inorg. Chim. Acta, 470, 11-21 (2018). 

  49. J. Artz and R. Palkovits, Base-free aqueous-phase oxidation of 5-hydroxymethylfurfural over ruthenium catalysts supported on covalent triazine frameworks, ChemSusChem, 8, 3832-3838 (2015). 

  50. X. Han, L. Geng, Y. Guo, R. Jia, X. Liu, Y. Zhang, and Y. Wang, Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst, Green Chem., 18, 1597-1604 (2016). 

  51. C. Zhou, W. Deng, X. Wan, Q. Zhang, Y. Yang, and Y. Wang, Functionalized carbon nanotubes for biomass conversion: The Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst, ChemCatChem, 7, 2853-2863 (2015). 

  52. S. Siankevich, G. Savoglidis, Z. Fei, G. Laurenczy, D. T. L. Alexander, N. Yan, and P. J. Dyson, A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under mild conditions, J. Catal., 315, 67-74 (2014). 

  53. N. K. Gupta, S. Nishimura, A. Takagaki, and K. Ebitani, Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure, Green Chem., 13, 824-827 (2011). 

  54. X. Wan, C. Zhou, J. Chen, W. Deng, Q. Zhang, Y. Yang, and Y. Wang, Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles, ACS Catal., 4, 2175-2185 (2014). 

  55. B. Saha, D. Gupta, M. M. Abu-Omar, A. Modak, and A. Bhaumik, Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid, J. Catal., 299, 316-320 (2013). 

  56. S. Wang, Z. Zhang, and B. Liu, Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable $Fe_{3}O_{4}$ -CoOx magnetite nanocatalyst, ACS Sustain. Chem. Eng., 3, 406-412 (2015). 

  57. S. Albonetti, A. Lolli, V. Morandi, A. Migliori, C. Lucarelli, and F. Cavani, Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal-support interaction, Appl. Catal. B, 163, 520-530 (2015). 

  58. S. Albonetti, T. Pasini, A. Lolli, M. Blosi, M. Piccinini, N. Dimitratos, J. A. Lopez-Sanchez, D. J. Morgan, A. F. Carley, G. J. Hutchings, and F. Cavani, Selective oxidation of 5-hydroxymethyl-2-furfural over $TiO_{2}$ -supported gold-copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio, Catal. Today, 195, 120-126 (2012). 

  59. S. E. Davis, L. R. Houk, E. C. Tamargo, A. K. Datye, and R. J. Davis, Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts, Catal. Today, 160, 55-60 (2011). 

  60. A. Lolli, S. Albonetti, L. Utili, R. Amadori, F. Ospitali, C. Lucarelli, and F. Cavani, Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd-Au nanoparticles, Appl. Catal. A, 504, 408-419 (2015). 

  61. A. Lolli, R. Amadori, C. Lucarelli, M. G. Cutrufello, E. Rombi, F. Cavani, and S. Albonetti, Hard-template preparation of Au/ $CeO_{2}$ mesostructured catalysts and their activity for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Microporous Mesoporous Mater., 226, 466-475 (2016). 

  62. F. Wang, Z. Yuan, B. Liu, S. Chen, and Z. Zhang, Catalytic oxidation of biomass derived 5-hydroxymethylfurfural (HMF) over Ru III-incorporated zirconium phosphate catalyst, J. Ind. Eng. Chem., 38, 181-185 (2016). 

  63. F. Kerdi, H. Ait Rass, C. Pinel, M. Besson, G. Peru, B. Leger, S. Rio, E. Monflier, and A. Ponchel, Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA, Appl. Catal. A, 506, 206-219 (2015). 

  64. Z. Zhang, J. Zhen, B. Liu, K. Lv, and K. Deng, Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst, Green Chem., 17, 1308-1317 (2015). 

  65. B. Siyo, M. Schneider, J. Radnik, M. M. Pohl, P. Langer, and N. Steinfeldt, Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials, Appl. Catal. A, 478, 107-116 (2014). 

  66. A. Jain, S. C. Jonnalagadda, K. V. Ramanujachary, and A. Mugweru, Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst, Catal. Commun., 58, 179-182 (2015). 

  67. X. Han, C. Li, Y. Guo, X. Liu, Y. Zhang, and Y. Wang, N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Appl. Catal. A, 526, 1-8 (2016). 

  68. X. Han, L. Geng, Y. Guo, R. Jia, X. Liu, Y. Zhang, and Y. Wang, Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst, Green Chemistry, 18, 1597-1604 (2016). 

  69. S. Wang, B. Liu, Z. Yuan, and Z. Zhang, Aerobic oxidation of 5-hydroxymethylfurfural into furan compounds over Mo-hydroxyapatite-encapsulated magnetic ${\gamma}-Fe_{2}O_{3}$ , J. Taiwan Inst. Chem. Eng., 58, 92-96 (2016). 

  70. F. Neatu, R. S. Marin, M. Florea, N. Petrea, O. D. Pavel, and V. I. Parvulescu, Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts, Appl. Catal. B, 180, 751-757 (2016). 

  71. L. Gao, K. Deng, J. Zheng, B. Liu, and Z. Zhang, Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin, Chem. Eng. J., 270, 444-449 (2015). 

  72. T. Gao, J. Chen, W. Fang, Q. Cao, W. Su, and F. Dumeignil, Ru/MnXCe1OY catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation, J. Catal., 368, 53-68 (2018). 

  73. T. Gao, Y. Yin, W. Fang, and Q. Cao, Highly dispersed ruthenium nanoparticles on hydroxyapatite as selective and reusable catalyst for aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under base-free conditions, Mol. Catal., 450, 55-64 (2018). 

  74. T. Gao, Y. Yin, G. Zhu, Q. Cao, and W. Fang, $Co_{3}O_{4}$ NPs decorated Mn-Co-O solid solution as highly selective catalyst for aerobic base-free oxidation of 5-HMF to 2,5-FDCA in water, Catal. Today, in press (2019). 

  75. T. Gao, T. Gao, W. Fang, and Q. Cao, Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water by hydrotalcite-activated carbon composite supported gold catalyst, Mol. Catal., 439, 171-179 (2017). 

  76. C. Zhou, W. Shi, X. Wan, Y. Meng, Y. Yao, Z. Guo, Y. Dai, C. Wang, and Y. Yang, Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst, Catal. Today, 330, 92-100 (2019). 

  77. H. Zhou, H. Xu, and Y. Liu, Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Co/Mn-lignin coordination complexes-derived catalysts, Appl. Catal. B, 244, 965-973 (2019). 

  78. X. H. Zhou, K. H. Song, Z. H. Li, W. M. Kang, H. R. Ren, K. M. Su, M. L. Zhang, and B. W. Cheng, The excellent catalyst support of $Al_{2}O_{3}$ fibers with needle-like mullite structure and HMF oxidation into FDCA over CuO/ $Al_{2}O_{3}$ fibers, Ceram. Int., 45, 2330-2337 (2019). 

  79. C. A. Antonyraj, N. T. T. Huynh, S. K. Park, S. Shin, Y. J. Kim, S. Kim, K. Y. Lee, and J. K. Cho, Basic anion-exchange resin (AER)-supported Au-Pd alloy nanoparticles for the oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furan dicarboxylic acid (FDCA), Appl. Catal. A, 547, 230-236 (2017). 

  80. A. B. Gawade, A. V. Nakhate, and G. D. Yadav, Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over $MnFe_{2}O_{4}$ catalyst, Catal. Today, 309, 119-125 (2018). 

  81. D. Gupta, K. K. Pant, and B. Saha, Titania nanoparticles embedded in functionalized carbon for the aqueous phase oxidation of 5-hydroxymethylfurfural, Mol. Catal., 435, 182-188 (2017). 

  82. M. J. Kang, H. Park, J. Jegal, S. Y. Hwang, Y. S. Kang, and H. G. Cha, Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media, Appl. Catal. B, 242, 85-91 (2019). 

  83. H. Liu, X. Cao, T. Wang, J. Wei, X. Tang, X. Zeng, Y. Sun, T. Lei, S. Liu, and L. Lin, Efficient synthesis of bio-monomer 2,5-furandicarboxylic acid from concentrated 5-hydroxymethylfurfural or fructose in $DMSO/H_{2}O$ mixed solvent, J. Ind. Eng. Chem., DOI: 10.1016/j.jiec.2019.04.038 (2019). 

  84. D. X. Martinez-Vargas, J. Rivera De La Rosa, L. Sandoval-Rangel, J. L. Guzman-Mar, M. A. Garza-Navarro, C. J. Lucio-Ortiz, and D. A. De Haro-Del Rio, 5-Hydroxymethylfurfural catalytic oxidation under mild conditions by Co (II), Fe (III) and Cu (II) salen complexes supported on SBA-15: Synthesis, characterization and activity, Appl. Catal. A, 547, 132-145 (2017). 

  85. N. Masoud, B. Donoeva, and P. E. de Jongh, Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid, Appl. Catal. A, 561, 150-157 (2018). 

  86. C. Megias-Sayago, A. Lolli, S. Ivanova, S. Albonetti, F. Cavani, and J. A. Odriozola, $Au/Al_{3}O_{3}$ - Efficient catalyst for 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid, Catal. Today, DOI: 10.1016/j.cattod.2018.04.024 (2018). 

  87. R. O. Rajesh, T. K. Godan, A. K. Rai, D. Sahoo, and A. P. Binod, Biosynthesis of 2,5-furan dicarboxylic acid by Aspergillus flavus APLS-1: Process optimization and intermediate product analysis, Bioresour. Technol., 284, 155-160 (2019). 

  88. B. Sang, J. Li, X. Tian, F. Yuan, and Y. Zhu, Selective aerobic oxidation of the 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over gold nanoparticles supported on graphitized carbon: Study on reaction pathways, Mol. Catal., 470, 67-74 (2019). 

  89. G. Shen, S. Zhang, Y. Lei, Z. Chen, and G. Yin, Synthesis of 2,5-furandicarboxylic acid by catalytic carbonylation of renewable furfural derived 5-bromofuroic acid, Mol. Catal., 455, 204-209 (2018). 

  90. H. Xia, J. An, M. Hong, S. Xu, L. Zhang, and S. Zuo, Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-difurancarboxylic acid over Pd-Au nanoparticles supported on Mg-Al hydrotalcite, Catal. Today, 319, 113-120 (2019). 

  91. D. Yan, J. Xin, C. Shi, X. Lu, L. Ni, G. Wang, and S. Zhang, Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in ionic liquids, Chem. Eng. J., 323, 473-482 (2017). 

  92. F. Yang, Y. Ding, J. Tang, S. Zhou, B. Wang, and Y. Kong, Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation, Mol. Catal., 435, 144-155 (2017). 

  93. H. Yuan, J. Li, H.-d. Shin, G. Du, J. Chen, Z. Shi, and L. Liu, Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60, Bioresour. Technol., 247, 1184-1188 (2018). 

  94. H. Zhang, Z. Feng, Y. Zhu, Y. Wu, and T. Wu, Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on $WO_{3}/g-C_{3}N_{4}$ composite under irradiation of visible light, J. Photochem. Photobiol. A, 371, 1-9 (2019). 

  95. L. Zhang, X. Luo, and Y. Li, A new approach for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid without using transition metal catalysts, J. Energy Chem., 27, 243-249 (2018). 

  96. S. Zhang, X. Sun, Z. Zheng, and L. Zhang, Nanoscale center-hollowed hexagon $MnCo_{2}O_{4}$ spinel catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Catal. Commun., 113, 19-22 (2018). 

  97. H. Chen, J. Shen, K. Chen, Y. Qin, X. Lu, P. Ouyang, and J. Fu, Atomic layer deposition of Pt nanoparticles on low surface area zirconium oxide for the efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Appl. Catal. A, 555, 98-107 (2018). 

  98. F. Koopman, N. Wierckx, J. H. de Winde, and H. J. Ruijssenaars, Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid, Bioresour. Technol., 101, 6291-6296 (2010). 

  99. Q. Wu, Y. He, H. Zhang, Z. Feng, Y. Wu, and T. Wu, Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on metal-free $g-C_{3}N_{4}$ under visible light irradiation, Mol. Catal., 436, 10-18 (2017). 

  100. D. K. Mishra, J. K. Cho, and Y. J. Kim, Facile production of 2,5-diformylfuran from base-free oxidation of 5-hydroxymethyl furfural over manganese-cobalt spinels supported ruthenium nanoparticles, J. Ind. Eng. Chem., 60, 513-519 (2018). 

  101. C. A. Antonyraj, J. Jeong, B. Kim, S. Shin, S. Kim, K. Y. Lee, and J. K. Cho, Selective oxidation of HMF to DFF using $Ru/{\gamma}$ -alumina catalyst in moderate boiling solvents toward industrial production, J. Ind. Eng. Chem., 19, 1056-1059 (2013). 

  102. K. Ghosh, R. A. Molla, M. A. Iqubal, S. S. Islam, and S. M. Islam, Ruthenium nanoparticles supported on N-containing mesoporous polymer catalyzed aerobic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF), Appl. Catal. A, 520, 44-52 (2016). 

  103. B. Ma, Y. Wang, X. Guo, X. Tong, C. Liu, Y. Wang, and X. Guo, Photocatalytic synthesis of 2,5-diformylfuran from 5-hydroxymethyfurfural or fructose over bimetallic Au-Ru nanoparticles supported on reduced graphene oxides, Appl. Catal. A, 552, 70-76 (2018). 

  104. J. Nie, J. Xie, and H. Liu, Activated carbon-supported ruthenium as an efficient catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, Chin. J. Catal., 34, 871-875 (2013). 

  105. S. Wang, Z. Zhang, B. Liu, and J. Li, Environmentally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst, Ind. Eng. Chem. Res., 53, 5820-5827 (2014). 

  106. Y. Zhu, X. Liu, M. Shen, Y. Xia, and M. Lu, Nano-ruthenium particles supported on a core-shell shuttle: As an efficient lipophilic catalyst for the aerobic oxidation of biomass-derived 5-(hydroxymethyl)furfural, Catal. Commun., 63, 21-25 (2015). 

  107. Y. Zhu, M. Shen, Y. Xia, and M. Lu, $Au/MnO_{2}$ nanostructured catalysts and their catalytic performance for the oxidation of 5-(hydroxymethyl)furfural, Catal. Commun., 64, 37-43 (2015). 

  108. X. Tong, L. Yu, H. Chen, X. Zhuang, S. Liao, and H. Cui, Highly efficient and selective oxidation of 5-hydroxymethylfurfural by molecular oxygen in the presence of $Cu-MnO_{2}$ catalyst, Catal. Commun., 90, 91-94 (2017). 

  109. B. Sarmah and R. Srivastava, Selective two-step synthesis of 2,5-diformylfuran from monosaccharide, disaccharide, and polysaccharide using H-beta and octahedral $MnO_2$ molecular sieves, Mol. Catal., 462, 92-103 (2019). 

  110. J. Nie and H. Liu, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on manganese oxide catalysts, J. Catal., 316, 57-66 (2014). 

  111. F. Neatu, N. Petrea, R. Petre, V. Somoghi, M. Florea, and V. I. Parvulescu, Oxidation of 5-hydroxymethyl furfural to 2,5-diformylfuran in aqueous media over heterogeneous manganese based catalysts, Catal. Today, 278, 66-73 (2016). 

  112. B. Liu, Z. Zhang, K. Lv, K. Deng, and H. Duan, Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide, Appl. Catal. A, 472, 64-71 (2014). 

  113. L. Ding, W. Yang, L. Chen, H. Cheng, and Z. Qi, Fabrication of spinel $CoMn_{2}O_{4}$ hollow spheres for highly selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, Catal. Today, in press (2018). 

  114. L. Chen, W. Yang, Z. Gui, S. Saravanamurugan, A. Riisager, W. Cao, and Z. Qi, MnOx/P25 with tuned surface structures of anatase-rutile phase for aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran, Catal. Today, 319, 105-112 (2019). 

  115. Y. Yan, K. Li, J. Zhao, W. Cai, Y. Yang, and J. M. Lee, Nanobelt-arrayed vanadium oxide hierarchical microspheres as catalysts for selective oxidation of 5-hydroxymethylfurfural toward 2,5-diformylfuran, Appl. Catal. B, 207, 358-365 (2017). 

  116. G. Lv, S. Chen, H. Zhu, M. Li, and Y. Yang, Pyridinic-nitrogen-dominated nitrogen-doped graphene stabilized Cu for efficient selective oxidation of 5-hydroxymethfurfural, Appl. Surf. Sci., 458, 24-31 (2018). 

  117. N. T. Le, P. Lakshmanan, K. Cho, Y. Han, and H. Kim, Selective oxidation of 5-hydroxymethyl-2-furfural into 2,5-diformylfuran over $VO^{2+}$ and $Cu^{2+}$ ions immobilized on sulfonated carbon catalysts, Appl. Catal. A, 464-465, 305-312 (2013). 

  118. A. Kumar and R. Srivastava, $FeVO_{4}$ decorated $-SO_{3}H$ functionalized polyaniline for direct conversion of sucrose to 2,5-diformylfuran & 5-ethoxymethylfurfural and selective oxidation reaction, Mol. Catal., 465, 68-79 (2019). 

  119. X. Jia, J. Ma, M. Wang, Z. Du, F. Lu, F. Wang, and J. Xu, Promoted role of $Cu(NO_{3})_{2}$ on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over $VOSO_{4}$ , Appl. Catal. A, 482, 231-236 (2014). 

  120. T. S. Hansen, I. Sadaba, E. J. Garcia-Suarez, and A. Riisager, Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions, Appl. Catal. A, 456, 44-50 (2013). 

  121. C. Fang, J. J. Dai, H. J. Xu, Q. X. Guo, and Y. Fu, Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature, Chin. Chem. Lett., 26, 1265-1268 (2015). 

  122. D. Baruah, F. L. Hussain, M. Suri, U. P. Saikia, P. Sengupta, D. K. Dutta, and D. Konwar, $Bi\;(NO_{3})_{3}{\cdot}5H_{2}O$ and cellulose mediated Cu-NPs - A highly efficient and novel catalytic system for aerobic oxidation of alcohols to carbonyls and synthesis of DFF from HMF, Catal. Commun., 77, 9-12 (2016). 

  123. C. A. Antonyraj, B. Kim, Y. Kim, S. Shin, K. Y. Lee, I. Kim, and J. K. Cho, Heterogeneous selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-diformylfuran catalyzed by vanadium supported activated carbon in MIBK, extracting solvent for HMF, Catal. Commun., 57, 64-68 (2014). 

  124. M. O. Kompanets, O. V. Kushch, Y. E. Litvinov, O. L. Pliekhov, K. V. Novikova, A. O. Novokhatko, A. N. Shendrik, A. V. Vasilyev, and I. O. Opeida, Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran with molecular oxygen in the presence of N-hydroxyphthalimide, Catal. Commun., 57, 60-63 (2014). 

  125. J. Zhao, X. Chen, Y. Du, Y. Yang, and J. M. Lee, Vanadium-embedded mesoporous carbon microspheres as effective catalysts for selective aerobic oxidation of 5-hydroxymethyl-2-furfural into 2, 5-diformylfuran, Appl. Catal. A, 568, 16-22 (2018). 

  126. M. Cui, R. Huang, W. Qi, R. Su, and Z. He, Synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural in ethyl acetate using 4-acetamido-TEMPO as a recyclable catalyst, Catal. Today, 319, 121-127 (2019). 

  127. X. Liu, H. Ding, Q. Xu, W. Zhong, D. Yin, and S. Su, Selective oxidation of biomass derived 5-hydroxymethylfurfural to 2, 5-diformylfuran using sodium nitrite, J. Energy Chem., 25, 117-121 (2016). 

  128. Q. Wang, W. Hou, T. Meng, Q. Hou, Y. Zhou, and J. Wang, Direct synthesis of 2,5-diformylfuran from carbohydrates via carbonizing polyoxometalate based mesoporous poly(ionic liquid), Catal. Today, 319, 57-65 (2019). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로