$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

우리나라 주요 호소의 수질특성에 대한 통계적 분석
Statistical Analysis on Water Quality Characteristics of Large Lakes in Korea 원문보기

한국물환경학회지 = Journal of Korean Society on Water Environment, v.35 no.2, 2019년, pp.165 - 180  

공동수 (경기대학교 바이오융합학부)

Abstract AI-Helper 아이콘AI-Helper

Water quality data of 81 lakes in Korea, 2013 ~ 2017 were analyzed. Most water quality parameters showed left-skewed distribution, while dissolved oxygen showed normal distribution. pH and dissolved oxygen showed a positive correlation with organic matter and nutrients, which appeared to be a nonsen...

주제어

표/그림 (14)

질의응답

핵심어 질문 논문에서 추출한 답변
우리나라의 강수에 관한 특징은 무엇인가? 우리나라는 강수가 여름 몬순기에 집중되어 홍수와 가뭄이 주기적으로 반복되어 왔다. 반면 단층, 습곡, 화산 등의 지각활동이 미약하였고, 대륙빙하로 덮인 적도 없기 때문에 홍수와 가뭄을 완충할 수 있는 자연호는 매우 적다.
우리나라에 홍수와 가뭄을 완충할 수 있는 자연호가 적은 이유는? 우리나라는 강수가 여름 몬순기에 집중되어 홍수와 가뭄이 주기적으로 반복되어 왔다. 반면 단층, 습곡, 화산 등의 지각활동이 미약하였고, 대륙빙하로 덮인 적도 없기 때문에 홍수와 가뭄을 완충할 수 있는 자연호는 매우 적다. 이러한 기후와 지리적 조건에 대응하여 일찍이 삼국시대부터 대형 저류시설이 축조되어 왔다.
홍수와 가뭄이 주기적으로 반복되고 자연호가 적은 우리나라의 기후와 지리적 조건에 대해, 과거의 대응 방식은? 반면 단층, 습곡, 화산 등의 지각활동이 미약하였고, 대륙빙하로 덮인 적도 없기 때문에 홍수와 가뭄을 완충할 수 있는 자연호는 매우 적다. 이러한 기후와 지리적 조건에 대응하여 일찍이 삼국시대부터 대형 저류시설이 축조되어 왔다. 2010년 말을 기준으로 당시 건설 중인 시설을 포함한 우리나라의 농업용수댐은 17,569개이고, 다목적댐 등 다른 용수목적의 댐들이 87개로서 댐과 저수지는 총 17,656개였다(KNCOLD, 2019).
질의응답 정보가 도움이 되었나요?

참고문헌 (60)

  1. Aizaki, M., Otsuki, A., Fukushima, T., Kawai, T., Hosomi, M., and Muraoka, K. (1981). Application of modified Carlson's trophic state index to Japanese lakes and its relationships to other parameters related to trophic state, Research Report from the National Institute for Environmental Studies, 23, 13-31. [Japanese Literature] 

  2. Brandao, L. P. M., Brighenti, L. S., Staehr, P. S., Barbosa, F. A. R., and Bezerra-Neto, J. F. (2017). Partitioning of the diffuse attenuation coefficient for photosynthetically available Irradiance in a deep dendritic tropical lake, Annals of the Brazilian Academy of Sciences, 89, 1 Suppl., 469-489. 

  3. Buiteveld, H. (1995). A model for calculation of diffuse light attenuation (PAR) and secchi depth, Netherlands Journal of Aquatic ecology, 29, 1, 55-65. 

  4. Carlson, R. E. (1977). A trophic state index for lakes, Limnology and Oceanography, 22(2), 361-369. 

  5. Davies-Colley, R. J. (1988). Mixing depths in New Zealand lakes, New Zealand Journal of Marine and Freshwater Research, 22(4), 517-528. 

  6. Denman, K. L. and Powell, T. M. (1984). Effects of physical processes on planktonic ecosystems in the coastal ocean, Oceanography and Marine Biology, An Annual Review, 22, 125-168. 

  7. Dzialowski, A. R., Wang, S. H., Lim, N. C., Spotts, W. W., and Huggins, D. G. (2005). Nutrient limitation of phytoplankton growth in central plains reservoirs, USA, Journal of Plankton Research, 27(6), 587-595. 

  8. Food and Agriculture Organization of the United Nations (FAO). (1992). The use of saline waters for crop production, FAO Irrigation and Drainage Parer 48, 1-133. 

  9. Forsberg, C. and Ryding, S. O. (1978). Water chemical analysis and/or algal assay? - Sewage effluent and polluted lake water studies -, Internationale Vereinigung fur Theoretische und Angewandte Limnologie: Mitteilungen, 21(1), 352-363. 

  10. Forsberg, C. and Ryding, S. O. (1980). Eutrophication parameters and trophic state indices in 30 swedish waste-receiving lakes, Archiv fur Hydrobiologie, 89(1/2), 189-207. 

  11. Gons, H. J., Veeningen, R., and Keulen, R. V. (1986). Effects of wind on a shallow lake ecosystem : resuspension of particles in The Loosdrecht lakes, Hydrobiological Bulletin, 20(1/2), 109-120. 

  12. Guildford, S. J. and Hecky, R. E. (2000). Total nitrogen, total phosphorus and nutrient limitation in lakes and oceans: Is there a common relationship?, Limnology and Oceanography, 45(6), 1213-1223. 

  13. Henderson-Sellers, B. (1984). Engineering Limnology, Pitman, Boston, 1-356. 

  14. Ha, K., Kim, H. W., and Joo, G. J. (1998). The phytoplankton succession in the lower part of hypertrophic Nakdong river (Mulgum), South Korea, phytoplankton and trophic gradients, Hydrobiologia, 369/370, 217-227. 

  15. Japanese Ministry of the Environment (JMOE). (1971). Enforcement regulations, water pollution control law, http://elaws.egov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId346M50000402002 (accessed on Feb. 2019). [Japanese Literature] 

  16. Joehnk, K. D. and Umlauf, L. (2001). Modelling the metalimnetic oxygen minimum in a medium sized alpine lake, Ecological Modelling, 136, 67-80. 

  17. Jung, H. J., Lee, B. M., Lee, K. H., Shin, H. S., and Hur, J. (2016). Influences of environmental conditions and refractory organic matters on organic carbon oxidation rates measured by a high temperature combustion and a UV-sulfate methods, Journal of Korean Society on Water Environment, 32(1), 98-107. [Korean Literature] 

  18. Kang, M. R., Min, J. H., Choi, J., Park, S., Shin, C., Kong, D., and Kim, H. S. (2018). A study on the light extinction characteristics in the main channel of Nakdong river by monitoring underwater irradiance in summer, Journal of Korean Society on Water Environment, 34(6), 632-641. [Korean Literature] 

  19. Khanna, D. R., Bhutiani, R., and Chandra, K. S. (2009). Effect of the euphotic depth and mixing depth on phytoplanktonic growth mechanism, International Journal of Environmental Research, 3(2), 223-228. 

  20. Kim, B. and Jung, S. (2007). Turbid storm runoffs in lake Soyang and their environmental effect, Journal of Korean Society Environmental Engineers, 29(11), 1185-1190. [Korean Literature] 

  21. Kim, B., Jung, S., Jang, C., and Kim, J. K. (2007). Comparison of BOD, COD and TOC as the indicator of organic matter pollution in streams and reservoirs of Korea, Journal of Korean Society Environmental Engineers, 29(6), 640-643. [Korean Literature] 

  22. Kim, H. S. and Hwang, S. J. (2004). Seasonal variation of water quality in a shallow eutrophic reservoir, Korean Journal of Limnology, 37(2), 180-192. [Korean Literature] 

  23. Kim, K. S. and Ahn, T. (2009). Characteristics of probability distribution of BOD concentration in Anseong stream watershed, Journal of Korean Society on Water Environment, 25(3), 425-431. [Korean Literature] 

  24. Kim, S. J., Kim, S., Chon, K. M., Lee, E., Sarper, S., Lee, S., Kim, D., and Cho, J. (2007). Comparison of three methods for measuring dissolved organic carbon in seawater, Proceedings of the 2007 Korean Society on Water Environment, Korean Society on Water Environment, 368-372. [Korean Literature] 

  25. Kong, D. (1997a). Limnological and ecological characteristics of a river-reservoir (Paldang), Korea, Korean Journal of Limnology, 30-Supplement, 524-535. 

  26. Kong, D. (1997b). Review on trophic state standards of Korean lakes, Joint Seminar of Korea and Japan on Water Quality Preservation and Watershed Management of Streams and Lakes, 251-266. [Korean Literature] 

  27. Kong, D. (2017). Simple material budget modeling for the Paldang reservoir in the spring season, Journal of Korean Society on Water Environment, 33(6), 696-714. [Korean Literature] 

  28. Kong, D., Min, J. K., and Noh, S. Y. (2018). Development of simple benthic macroinvertebrates index (SBMI) for biological assessment on stream environment, Journal of Korean Society on Water Environment, 34(5), 514-536. [Korean Literature] 

  29. Korea National Committee on Large Dams (KNCOLD). (2019). Water Resources of Korea, http://www.kncold.or.kr (accessed on Feb. 2019). 

  30. Lee, J. Y., Lee, J. H., Shin, K. H., Hwang, S. J., and An, K. G. (2007). Trophic state and water quality characteristics of Korean agricultural reservoirs, Korean Journal of Limnology, 40(2), 223-233. [Korean Literature] 

  31. Lee, Y. J., Choi, S. H., Jung, K. W., Park, J. O., and Cho, J. G. (2014). Dynamics of TOC affected by plankton communities in the SeoNakdong river, Busan, The Annual Report of Busan Metropolitan city Institute of Health and Environment, 24(1), 88-100. [Korean Literature] 

  32. Lorenzen, M. W. (1980). Use of chlorophyll-secchi disk relationship, Limnology and Oceanography, 25(2), 371-372. 

  33. Megard, R. O., Settles, J. C., Boyer, H. A., and Combs, W. S. (1980). Light, secchi disk, and trophic states, Limnology and Oceanography, 25(2), 373-377. 

  34. Ministry of Environment (ME). (2013). Research for establishing survey system of lake environment, Ministry of Environment, 1-197. [Korean Literature] 

  35. Morris, D. P. and Lewis, Jr. W. M. (1988). Phytoplankton nutrient limitation in Colorado mountain lakes, Freshwater Biology, 20(3), 315-327. 

  36. National Institute of Environmental Research (NIER). (2006). A study on the comprehensive assessment methods of water environment - Eutrophication -, National Institute of Environmental Research, 1-282. [Korean Literature] 

  37. National Institute of Environmental Research (NIER). (2014). Assessment on water quality and flowrate of TMDL stations in 2013, NIER-GP2015-041, National Institute of Environmental Research, 1-247. [Korean Literature] 

  38. National Institute of Environmental Research (NIER). (2018). Water environment information System, http://water.nier.go.kr (accessed May. 2018). 

  39. National Rivers Authority (NRA). (1994). The quality of rivers and canals in England and Wales (1990 to 1992) - As assessed by a new general quality assessment scheme, Report of the National Rivers Authority, Water Quality Series, 19, 1-38. 

  40. Park H. K. (2014). Elemental stoichiometry of natural phytoplankton communities in reservoirs of the Han river systems, Journal of Korean Society on Water Environment, 30(6), 665-672. [Korean Literature] 

  41. Phlips, E. J., Lynch, T. C., and Badylak, S. (1995). Chlorophyll a, tripton, color, and light availability in a shallow tropical inner-shelf lagoon, Florida Bay, USA, Marine Ecology Progress Series, 127, 223-234. 

  42. Qin, B. Q., Yang, L., Chen, F., Zhu, G., Zhang, L., and Chen, Y. (2006). Mechanism and control of lake eutrophication, Chinese Science Bulletin, 51(19), 2401-2412. 

  43. Reddy, K. R., Fisher, M. M., and Ivanoff, D. (1996). Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake, Journal of Environmental Quality, 25(2), 363-371. 

  44. Redfield, A. C., Ketchum, B. H., and Richards, F. A. (1963). The influence of organisms on the composition of seawater, In: Hill MN, editor, The Sea, 2, John Wiley, New York, 26-77. 

  45. Reynolds, C. S. (1984). The ecology of freshwater phytoplankton, Cambridge University Press, Cambridge, UK. 

  46. Sakamoto, M. (1966a). Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth, Archiv fur Hydrobiologie, 62, 1-28. 

  47. Sakamoto, M. (1966b). The chlorophyll amount in the euphotic zone in some Japanese lakes and its significance in the photosynthetic production of phytoplankton community, Botanical Magazine, 79, 77-78. 

  48. Senga, Y., Okumura, M., and Seike, Y. (2010). Seasonal and spatial variation in the denitrifying activity in estuarine and lagoonal sediments, Journal of Oceanography, 66(1), 155-160. 

  49. Sondergaard, M., Kristensen, P., and Jeppesen, E. (1992). Phosphorus release from resuspended sediment in the shallow and wind-exposed lake Arreso, Denmark, Hydrobiologia, 228, 91-99. 

  50. Talling, J. F. (2003). Phytoplankton-zooplankton seasonal timing and the 'Clear-Water Phase' in some English lakes, Freshwater Biology, 48(1), 39-52. 

  51. Thornton, K. W., Kimmel, B. L., and Payne, F. E. (1990). Reservoir limnology: ecological perspectives, Wiley-Interscience, 1-246. 

  52. Tyson, R. V. and Pearson T. H. (1991). Modern and ancient continental shelf anoxia: an overview, Geological Society Special Publication, 58, 1-24. 

  53. United Nations Educational, Scientific and Cultural Organization (UNESCO). (1966). Determination of photosynthetic pigments in sea-water, Paris, 1-69. 

  54. United States Environmental Protection Agency (US EPA). (1974). The relationships of phosphorus and nitrogen to the trophic state of northeast and north-central lakes and reservoirs, National Eutrophication Survey Working Paper no 23. 

  55. Vollenweider, R. A. and Kerekes, J. (1982). Eutrophication of waters. monitoring, assessment and control, OECD Cooperative programme on monitoring of inland waters, OECD, 1-154. 

  56. Water Framework Directive (WFD). (2000). Directive 2000/60/EC of the european parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy, OJ L 327, 22.12.2000, 1-73. 

  57. Wetzel, R. G. (1983). Limnology, 2nd Edition, Saunders College Publishing, Philadelphia. 

  58. Wetzel, R.G. (2001). Limnology, Lake and River Ecosystems, 3rd ed., Academic Press, 1-1006. 

  59. Yamaguchi, H., Katahira, R., Ichimi, K., and Tada, K. (2013). Optically active components and light attenuation in an offshore station of harima sound, eastern seto inland sea, Japan, Hydrobiologia, 714(1), 49-59. 

  60. You, K. A., Byeon, M. S., and Hwang, S. J. (2012). Effects of hydraulic-hydrological changes by monsoon climate on the zooplankton community in lake Paldang, Korea, Korean Journal of Ecology and Environment, 45(3), 278-288. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로