$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Suspended Columns for Seismic Isolation in Structures (SCSI): A preliminary analytical study

Earthquakes and structures, v.16 no.6, 2019년, pp.743 - 755  

Shahabi, Ali Beirami (Department of Civil Engineering, Faculty of Engineering, Urmia University) ,  Ahari, Gholamreza Zamani (Department of Civil Engineering, Faculty of Engineering, Urmia University) ,  Barghian, Majid (Faculty of Civil Engineering, University of Tabriz)

Abstract AI-Helper 아이콘AI-Helper

In this paper, a new system of seismic isolation for buildings - called suspended columns - is introduced. In this method, the building columns are placed on the hinged cradle seats instead of direct connection to the foundation. In this system, each of the columns is put on a seat hung from its sur...

주제어

참고문헌 (51)

  1. Barghian, M. and Shahabi, A.B. (2007), "A new approach to pendulum base isolation", Struct. Control Hlth. Monit., 14, 177-185. https://doi.org/10.1002/stc.115. 

  2. Buckle, I., Nagarajaiah, S. and Ferrell, K. (1999), "Stability of elastomeric isolation bearings", J. Struct. Eng., 125, 946-954. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(3). 

  3. Calabrese, A., Spizzuoco, M., Strano, S. and Terzo, M. (2019), "Hysteresis models for response history analyses of recycled rubber-fiber reinforced bearings (RR-FRBs) base isolated buildings", Eng. Struct., 178, 635-644. https://doi.org/10.1016/j.engstruct.2018.10.057. 

  4. Chen, P.C. and Wang, S.J. (2016), "Improved control performance of sloped rolling-type isolation devices using embedded electromagnets", Struct. Control Hlth. Monit., 24(1), 1853. https://doi.org/10.1002/stc.1853. 

  5. Chu, J.Y., Ge, N., Chen, L.L. and Zhao, S.Y. (2013), "Study on characteristics of dry friction plate-reset spring seismic isolation system", Appl. Mech. Mater., 353, 1811-1814. https://doi.org/10.4028/www.scientific.net/AMM.353-356.1811. 

  6. Chung, L.L., Yang, C.Y., Chen, H.M. and Lu, L.Y. (2009), "Dynamic behavior of nonlinear rolling isolation system", Struct. Control Hlth. Monit., 16(1), 32-54. https://doi.org/10.1002/stc.305. 

  7. Fenz, D.M. and Constantinou, M.C. (2006), "Behaviour of the double concave Friction Pendulum bearing", Earthq. Eng. Struct. Dyn., 35, 1403-1424. https://doi.org/10.1002/eqe.589. 

  8. Fenz, D.M. and Constantinou, M.C. (2008a), "Modeling triple friction pendulum bearings for response-history analysis", Earthq. Spectra, 24, 1011-1028. https://doi.org/10.1193/1.2982531. 

  9. Fenz, D.M. and Constantinou, M.C. (2008b), "Spherical sliding isolation bearings with adaptive behavior: Theory", Earthq. Eng. Struct. Dyn., 37, 163-183. https://doi.org/10.1002/eqe.750. 

  10. Fenz, D.M. and Constantinou, M.C. (2008c), "Spherical sliding isolation bearings with adaptive behavior: Experimental verification", Earthq. Eng. Struct. Dyn., 37, 185-205. https://doi.org/10.1002/eqe.750. 

  11. Foti, D., Catalan Goni, A. and Vacca, S. (2013) "On the dynamic response of rolling base isolation systems", Struct. Control Hlth. Monit, 20, 639-648. https://doi.org/10.1002/stc.1538. 

  12. Guerreiro, L., Azevedo, J. and Muhr, A.H. (2007), "Seismic tests and numerical modeling of a rolling-ball isolation system", J. Earthq. Eng., 11, 49-66. https://doi.org/10.1080/13632460601123172. 

  13. Hosseini, M. and Farsangi, E.N. (2012), "Telescopic columns as a new base isolation system for vibration control of high-rise buildings", Earthq. Struct., 3(6), 853-67. https://doi.org/10.12989/eas.2012.3.6.853. 

  14. Ismail, M. (2016), "Novel hexapod-based unidirectional testing and FEM analysis of the RNC isolator", Struct. Control Hlth. Monit, 23, 894-922. https://doi.org/10.1002/stc.1817. 

  15. Ismail, M., Rodellar, J. and Ikhouane, F. (2012), "Seismic protection of low- to moderate-mass buildings using RNC isolator", Struct. Control Hlth. Monit., 19, 22-42. https://doi.org/10.1002/stc.421. 

  16. Jangid, R.S. (2000), "Stochastic seismic response of structure isolated by rolling rods", Eng. Struct., 22, 937-946. https://doi.org/10.1016/S0141-0296(99)00041-3. 

  17. Jangid, R.S. and Londhe, Y.B. (1998), "Effectiveness of elliptical rolling rods for base isolation", J. Struct. Eng., ASCE, 124, 469-472. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(469). 

  18. Japan Road Association (1980), Specification for Highway Bridges. Part V, Earthquake Resistant Design, Tokyo, Japan. 

  19. Karayel, V., Yuksel, E., Gokce, T. and Sahin, F. (2017), "Spring tube braces for seismic isolation of buildings", Earthq. Eng. Eng. Vib., 16, 219-231. https://doi.org/10.1007/s11803-017-0378-9. 

  20. Losanno, D., Sierra, I.E.M., Spizzuoco, M., Marulanda, J. and Thomson, P. (2019), "Experimental assessment and analytical modeling of novel fiber-reinforced isolators in unbounded configuration", Compos. Struct., 212, 66-82. https://doi.org/10.1016/j.compstruct.2019.01.026. 

  21. Lu, L.Y. and Hsu, C.C. (2013a), "Experimental study of variablefrequency rocking bearings for near-fault seismic isolation", Eng. Struct., 46, 116-129. https://doi.org/10.1016/j.engstruct.2012.07.013. 

  22. Lu, L.Y. and Hsu, C.C. (2013b), "Eccentric rocking bearings with a designable friction property for seismic isolation: experiment and analysis", Earthq. Spectra, 29(3), 869-895. https://doi.org/10.1193/1.4000166. 

  23. Lu, L.Y. and Yang, Y.B. (1997), "Dynamic response of equipment in structures with sliding support", Earthq. Eng. Struct. Dyn., 26(1), 61-76. https://doi.org/10.1002/(SICI)1096-9845(199701)26:1. 

  24. Lu, X., Lu, Q., Lu, W., Zhou, Y. and Zhao, B. (2017), "Shaking table test of a four tower high rise connected with an isolated sky corridor", Struct. Control Hlth. Monit., 25(3), 2109. https://doi.org/10.1002/stc.2109. 

  25. Mokha, A., Constantinou, M. and Reinhorn, A. (1990), "Teflon bearings in base isolation I: Testing", J. Struct. Eng., 116, 438-454. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(438). 

  26. Mostaghel, N. and Khodaverdian, M. (1987), "Dynamics of resilientfriction base isolator (R-FBI)", Earthq. Eng. Struct. Dyn., 15, 379-390. https://doi.org/10.1002/eqe.4290150307. 

  27. Naeim, F. and Kelly, J.M. (1999), Design Of Seismic Isolated Structures, From Theory To Practice, Wiley, New York, USA. 

  28. Nakamura, Y., Saruta, M., Wada, A., Takeuchi, T., Hikone, S. and Takahashi, T. (2011), "Development of the core-suspended isolation system", Earthq. Eng. Struct. Dyn., 40, 429-447. https://doi.org/10.1002/eqe.1036. 

  29. Pranesh, M. and Sinha, R. (2000), "VFPI: An isolation device for aseismic design", Earthq. Eng. Struct. Dyn., 29(5), 603-627. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5. 

  30. Pranesh, M. and Sinha, R. (2002), "Earthquake resistant design of structures using the variable frequency pendulum isolator", J. Struct. Eng., 128(7), 870-880. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(870). 

  31. Quaglini, V., Gandelli, E., Dubini, P. and Limongelli, M.P. (2017), "Total displacement of curved surface sliders under nonseismic and seismic actions: A parametric study", Struct. Control Hlth. Monit., 24(12), 2031. https://doi.org/10.1002/stc.2031. 

  32. Rawat, A., Ummer, N. and Matsagar, V. (2018), "Performance of bidirectional elliptical rolling rods for base isolation of buildings under near-fault earthquakes", Adv. Struct. Eng., 21(5), 675-693. https://doi.org/10.1177/1369433217726896. 

  33. Robinson, W H. (1982), "Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes", Earthq. Eng. Struct. Dyn., 10, 593-604. https://doi.org/10.1002/eqe.4290100408. 

  34. Robinson, WH. and Tucker, A.G. (1977), "A lead-rubber shear damper", Bull. N.Z. Nat. Soc. Earthq. Eng., 3, 93-101. 

  35. Ryan, K.L., Kelly, J.M. and Chopra, A.K. (2005), "Nonlinear model for lead-rubber bearings including axial-load effects", J. Eng. Mech., 131, 1270-1278. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:12(1270). 

  36. Skinner, R.I., Robinson, W.H. and Mcverry, G.H. (1993), An Introduction to Seismic Isolation, Wiley, New York, USA. 

  37. Soni, D.P., Mistry, B.B., Jangid, R.S. and Panchal, V.R. (2011), "Seismic response of the double variable frequency pendulum isolator", Struct. Control Hlth. Monit., 18(4), 450-470. https://doi.org/10.1002/stc.384. 

  38. Spizzuoco, M., Quaglini, V., Calabrese, A., Serino, G. and Zambrano, C. (2016), "Study of wire rope devices for improving the recentering capability of base isolated buildings", Struct. Control Hlth. Monit., 24(6), 1928. https://doi.org/10.1002/stc.1928. 

  39. Tsai, C.S., Lin, Y.C., Chen, W.S. and Su, H.C. (2010), "Tri-directional shaking table tests of vibration sensitive equipment with static dynamics interchangeable-ball pendulum system", Earthq. Eng. Eng. Vib., 9(1), 103-112. https://doi.org/10.1007/s11803-010-9009-4. 

  40. Virginio, Q., Gandelli, E. and Dubini, P. (2016), "Experimental investigation of the re-centering capability of curved surface sliders", Struct. Control Hlth. Monit., 24(2), 1870. 

  41. Warn, G.P. and Whittaker, A.S. (2008), "Vertical earthquake loads on seismic isolation systems in bridges", J. Struct. Eng., 134, 1696-1704. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1696). 

  42. Wei, B., Wang, P., He, X. and Jiang, L. (2018a), "The impact of the convex friction distribution on the seismic response of a springfriction isolation system", KSCE J. Civil Eng., 22(4), 1203-1213. https://doi.org/10.1007/s12205-017-0938-6. 

  43. Wei, B., Wang, P., Yang, M. and Jiang, L. (2017), "Seismic response of rolling isolation systems with concave friction distribution", J. Earthq. Eng., 21, 325-342. https://doi.org/10.1080/13632469.2016.1157530. 

  44. Wei, B., Yang, T., Jiang, L. and He, X. (2018c), "Effects of frictionbased fixed bearings on the seismic vulnerability of a high-speed railway continuous bridge", Adv. Struct. Eng., 21(5), 643-657. https://doi.org/10.1177/1369433217726894. 

  45. Wei, B., Yang, T., Jiang, L. and He, X. (2018e), "Effects of uncertain characteristic periods of ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway", Bull. Earthq. Eng., 16(9), 3739-3769. https://doi.org/10.1007/s10518-018-0326-8 

  46. Wei, B., Zuo, C., He, X. and Jiang, L. (2018a), "Numerical investigation on scaling a pure friction isolation system for civil structures in shaking table model tests", Int. J. Nonlin. Mech., 98, 1-12. https://doi.org/10.1016/j.ijnonlinmec.2017.09.005. 

  47. Wei, B., Zuo, C., He, X., Jiang, L. and Wang, T. (2018d), "Effects of vertical ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway", Soil Dyn. Earthq. Eng., 115, 281-290. https://doi.org/10.1016/j.soildyn.2018.08.022. 

  48. Xiong, W., Zhang, S.J., Jiang, L.Z. and Li, Y.Z. (2017), "Introduction of the convex friction system (CFS) for seismic isolation", Struct. Control Hlth. Monit., 24(1), 1861. https://doi.org/10.1002/stc.1861. 

  49. Xiong, W., Zhang, S.J., Jiang, L.Z. and Li, Y.Z. (2018), "The multangular-pyramid concave friction system (mpcfs) for seismic isolation: a preliminary numerical study", Eng. Struct., 160, 383-394. https://doi.org/10.1016/j.engstruct.2017.12.045. 

  50. Zayas, V.A., Low, S.S. and Mahin, S.A. (1990), "A simple pendulum technique for achieving seismic isolation", Earthq. Spectra, 6(2), 317-333. https://doi.org/10.1193/1.1585573. 

  51. Zhou, Q., Lu, X., Wang, Q., Feng, D. and Yao, Q. (1998), "Dynamic analysis on structures base-isolated by a ball system with restoring property", Earthq. Eng. Struct. Dyn., 27, 773-791. https://doi.org/10.1002/(SICI)1096-9845(199808)27:8. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로