$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

ARIMA 모형을 활용한 예금은행 주택담보대출 분석 및 예측 연구

A Study on the Analysis and Prediction of Housing Mortgage in Deposit Bank Using ARIMA Model

초록

본 연구에서는 예금은행 주택담보대출에 대해 매년 문제가 야기되는 지속적인 증가율을 정성적으로 파악하고, 다시 안정세를 보일 수 있는 특성요인을 파악하고자 향후 주택담보대출에 대해 정량적으로 분석하고 증가율 추세에 대한 대책을 마련하고자 예측 연구를 실행하였다. 빅-데이터 분석에 많이 쓰이는 R 프로그램을 활용하여 데이터를 분석한 결과 ARIMA 모형의 모수를 (0,1,1)(0,1,1)[12]로 추정하였을 때, MAPE와 RMSE의 검정 결과 기준으로 가장 최적의 ARIMA 모형인 것으로 나타났다. 해당 모수를 통해 향후 5년 (60개월간)의 추정치를 예측한 결과, 평균 4.5%대의 증가율을 나타냈다. 그러나 이는 사회 환경요인의 요인을 반영하지 않은 예측 값이기 때문에 다양한 사회 환경요인을 활용하여 외부 충격요인에 대한 구조적 모형 연구가 이루어져야 할 것이며, 추후 관련연구들은 이와 같은 한계들을 극복하여 진행될 필요가 있으며 정책적인 활용도를 높이기 위해 많은 실증연구가 이루어져야 하겠다.

Abstract

In this study, we conducted a prediction study to qualitatively identify the continuous growth rate that causes problems every year for deposit bank mortgage loans, identify the characteristic factors that could once again stabilize, and come up with measures for future quantitative analysis of mortgage loans and growth trends. Based on data analysis using the R program, which is widely used for big data analysis, the parameters of ARIMA model (0.1,1)(0.1,1)[12] were found to be most suitable. In these indicators, estimates over the next five years (60 months) increased 4.5% on average. However, this has limitations that do not reflect socio-environmental factors, which require further study of these limitations.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일