$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 지반조건에 따른 말뚝의 인발저항 평가를 위한 말뚝-지반 경계면 강도감소계수 고찰
A Study on Strength Reduction Factor of Pile-soil Interface for Evaluation of Pile Pullout Resistance by Soil Condition 원문보기

한국지반신소재학회논문집 = Journal of the Korean Geosynthetics Society, v.18 no.2, 2019년, pp.45 - 54  

유승경 (Dept. of Civil Engineering, Myongji College) ,  신희수 (Institute of Technology Research and Development, UCI Tech co. Ltd.) ,  이광우 (Infra safety Institute, Korea Institute of Civil engineering and building Technology) ,  박정준 (Incheon Disaster Prevention Research Center, Incheon National University) ,  최충락 (Geotechnical Engineering Depatment, Pyunghwa Engineering Consultants) ,  홍기권 (Institute of Technology Research and Development, Korea Engineering & Construction)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 원지반의 상대밀도와 세립분 함유율의 조건에 따른 말뚝의 인발거동 특성 규명을 위하여, 유한요소해석을 수행하였다. 수치해석에서는 말뚝과 지반 경계에서의 전단거동을 원활히 모사하기 위해서 경계요소와 경계면 강도감소계수($R_{inter}$)를 부여하였으며, 그 결과를 기존의 실험적 연구결과(You et al., 2018)와 비교함으로써 본 수치해석 방법의 신뢰성을 검증하였고, 말뚝-지반 경계면에서의 변형 특성과 함께 경계요소에 대한 $R_{inter}$값의 결정방법을 제시하였다. 해석 결과, 본 연구에서 적용된 해석모델을 이용한 수치해석은 말뚝의 인발모형실험에 의한 말뚝과 지반의 경계면 특성을 적절하게 모사하였다. 또한 제시된 $R_{inter}$의 적용에 있어서, 반드시 지반의 상대밀도와 세립분 함유율 조건을 고려해야 할 필요가 있음을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

This paper describes the results of finite element analysis (FEA), in order to investigate a characteristics of pile pullout behavior according to the conditions of the relative density and fines content in original ground. In the FEA, a boundary elements and strength reduction factors ($R_{int...

주제어

표/그림 (14)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이와 같이 국내외에서 말뚝기초의 인발저항 평가와 관련한 많은 연구가 수행되어 그 영향인자들에 대한 다양한 고찰이 이루어져 왔지만, 보다 합리적인 설계법 확립을 위해서는 말뚝과 지반 경계에서의 전단거동에 기인하는 마찰저항 특성을 다양한 지반조건에 대해서 보다 엄밀히 고찰할 필요가 있다. 따라서 본 연구에서는 원지반의 상대밀도와 세립분 함유율의 조건에 따른 말뚝의 인발거동 특성 규명의 일환으로써 일련의 유한요소 수치해석을 수행하였다. 수치해석에서는 말뚝과 지반 경계에서의 전단거동을 원활히 모사하기 위해서 경계요소와 경계면 강도감소계수(Rinter)를 부여하였으며, 그 결과를 말뚝의 인발거동에 대한 기존의 실험적 연구결과(You et al.
  • 본 연구에서는 다양한 지반조건에 따른 말뚝의 인발거동 특성을 규명하기 위하여, 범용 수치해석 프로그램인 PLAXIS 2D를 활용하여 말뚝과 지반 경계에서의 전단거 동을 원활히 모사할 수 있는 일련의 유한요소해석을 수행하였다. 우선, 앞서 언급한 실험적 연구결과(You et al.
  • 본 연구에서는 말뚝 주변 원지반의 상대밀도와 세립분 함유율의 조건에 따른 말뚝의 인발거동 특성을 규명하기 위하여 일련의 유한요소 수치해석을 수행하였으며, 그 결과를 정리하면 다음과 같다.
  • , 1999)을 적용하였다. 이는 선행연구(Hong et al., 2019)를 통하여 본 연구 범위에 대한 Mohr-Coulomb모델과 HS 모델을 이용한 유한요소해석 결과를 비교함으로써, HS 모델의 적용성을 검토한 결과를 반영한 것이다.
본문요약 정보가 도움이 되었나요?

참고문헌 (20)

  1. Benz, T. (2007), Small-Strain Stiffness of Soils and its Numerical Consequences, Ph.D. Thesis, University of Stuttgart. 

  2. Cho, S. H. and Kim, H. M. (2010), "Characteristics on Pullout Behavior of Belled Tension Pile in Sandy Soils", Journal of the Korea Academia-Industrial cooperation Society, Vol.11, No.9 pp.3599-3609. (in Korean with English summary) 

  3. Das, B. M. and Seeley, G. R. (1975), "Uplift Capacity of Buried Model Piles in Sand", Journal of the Geotechnical Engineering Division, Vol.101, Issue 10, pp.1091-1094. 

  4. Hong, G., You, S. K., Shin, H., Lee, K. and Choi, C. (2019), "A Study on Numerical Analysis for Pullout Behavior Prediction of Pile", 2019 Spring Geosynthetics Conference, Korea, pp.108-109. (in Korean) 

  5. Hong, W. P., Yea, G. G. and Lee, J. H. (2005), "Evaluation of skin friction on large drilled shaft", Journal of the Korean geotechnical society, Vol.21, No.1, pp.93-103. (in Korean with English summary) 

  6. Hong, W., Lee, J., and Chai, S. (2008), "Bearing Capacity of SDA Augered Piles in Various Grounds Depending on Water-cement Ratio of Cement Milk", Journal of Korean Geotechnical Society, Vol.24, No.5, pp.37-54. (in Korean with English summary) 

  7. Lee, H. J. and Kim, H. T. (2006a), "Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts", Journal of The Korean Society of Civil Engineers, Vol.26, No.6c, pp.395-406. (in Korean with English summary) 

  8. Lee, H. J. and Kim, H. T. (2006b), "Numerical Analyses on the Behavioral Characteristics of Side of Drilled Shafts in Rocks and Suggestion of Design Charts", Journal of The Korean Society of Civil Engineers, Vol.26, No.6c, pp.407-419. (in Korean with English summary) 

  9. Lee, S. J. (2013), "Analysis of Diameter Effects on Skin Friction of Drilled Shafts in Sand", Journal of the Korean geotechnical society, Vol.29, No.1, pp.161-170. (in Korean with English summary) 

  10. Lim, H., Park, Y., and Park, J. (2002), "Investigation of Characteristics and Suggestion of Evaluation Formulae for Skin Resistance of SIP", Journal of the Korean Geoenvironmental Society, Vol.3, No.2, pp.15-21. (in Korean with English summary) 

  11. Lim, Y. J. and Seo, S. H. (2002), "Uplift Testing and Load-transfer Characteristics of Model Drilled Shafts in Compacted Weathered Granite Soils", Journal of the Korean Geotechnical Society, Vol.18, No.4, pp.105-117. (in Korean with English summary) 

  12. Meyerhof, G. G. (1959), "Compaction of Sands and Bearing Capacity of Piles", J. S. Mech. Fdtn. Div, ASCE, pp.1-29. 

  13. Meyerhof, G. G. (1976), "Bearing Capacity and Settlement of Pile Foundations", Journal of Geotechnical Engineering, ASCE, 102, No.GT-3, pp.197-228. 

  14. Meyerhof, G. G. and Adams, J. I. (1968), "The Ultimate Uplift Capacity of Foundation", Canadian Geotechnical. Journal, Vol.5, No.4, pp.225-244. 

  15. O'Neill, M. W. and Reese, L. C. (1999), "Drilled Shafts: Construction Procedures and Design Methods", Publication No. FHWA-IF-99-025, Federal Highway Administration (FHWA). 

  16. Reese, L. C. and O'Neill, M. W. (1988), Drilled Shafts: Construction and Design, Publication No. HI-88-042, Federal Highway Administration (FHWA). 

  17. Schanz, T., Verrmeer, P. A., and Bonnier, P. G. (1999), "The Hardening Soil Model: Formulation and Verification", Beyond 2000 in computational geotechnics, Balkema, Rotterdam, pp.1-16. 

  18. Yoon, M. S., Lee, C. K. and Kim, M. H. (2013), "Evaluation of Unit Side Resistance of Drilled Shafts by Revised SPT N Value", Journal of the Korean geotechnical society, Vol.29, No.12, pp.5-10. (in Korean with English summary) 

  19. You, S. K., Hong, G., Jeong, M., Shin, H., Lee, K. W. and Ryu, J. (2018), "Effect of Relative Density and Fines Content on Pullout Resistance Performance of Drilled Shafts", Journal of the Korean Geotechnical Society, Vol.34, No.4, pp.37-47. (in Korean with English summary) 

  20. You, S. K., Shin, H., Lee, K. W., Park, J. J., Choi, C. L. and Hong, G. (2019), "Evaluation on applicability of finite element analysis in model test of pile pullout", Journal of the Korean Geosynthetics Society, Vol.18, No.2, Accepted. (in Korean with English summary) 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로