$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

인체 폐암 세포주 A549에서 Litsea populifolia 추출물의 항산화 및 항암활성 분석
Anti-oxidative and Anti-cancer Activities of Ethanol Extract of Litsea populifolia 원문보기

생명과학회지 = Journal of life science, v.29 no.6 = no.230, 2019년, pp.679 - 687  

진수정 (동의대학교 블루바이오소재개발센터) ,  오유나 (동의대학교 블루바이오소재개발센터) ,  정현영 (동의대학교 블루바이오소재개발센터) ,  윤희정 (동의대학교 공과대학 바이오응용공학부) ,  박정하 (동의대학교 공과대학 바이오응용공학부) ,  권현주 (동의대학교 블루바이오소재개발센터) ,  김병우 (동의대학교 블루바이오소재개발센터)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 인체 폐암 세포인 A549를 사용하여 Litsea populifolia 에탄올 추출물(EELP)의 항산화 및 항암활성과 그 분자적 기전에 관하여 연구하였다. 먼저 EELP의 DPPH 라디칼 소거활성을 측정한 결과, $IC_{50}$$11.71{\mu}g/ml$로 유의적인 항산화활성을 보였다. 또한 EELP가 인체폐암세포주인 A549와 정상 폐세포인 IMR90의 세포증식에 미치는 영향을 알아본 결과, 정상세포의 생존율에는 거의 영향을 끼치지 않은 반면, EELP 농도의존적으로 A549 세포의 성장이 저해되었으며, 세포 주기 변화를 분석한 결과 EELP에 의해 A549 세포의 강력한 G1 arrest가 유도되는 것을 확인하였다. EELP에 의해 유도되는 G1 arrest는 세포주기 조절 인자인 Cyclin D1, Cyclin E, Cyclin-dependent kinase인 CDK2와 CDK6의 mRNA 발현 감소와 더불어 단백질 발현 감소와 연관되어 있었다. 또한 EELP 처리에 의한 CDK/Cyclin complex의 발현 저해는 DNA 손상에 의해 활성화되는 CHK2의 활성화 형태인 p-CHK2의 발현 증가에 따른 p53 인산화에 따른 활성화와 CDK 활성화 효소인 CDC25A 탈인산화효소의 인산화에 따른 저해에 의해 나타나는 결과로 사료된다. 이러한 결과들로부터 EELP는 두가지 경로인 p53-의존성과 p53-비의존성(ATM/CHK2/CDC25A/CDK2) 경로를 통해 A549의 G1 arrest를 유도하여 세포 증식을 억제하는 것으로 사료된다. 본 연구결과는 EELP가 폐암에 대한 새로운 항암활성 소재로서 사용될 수 있는 가능성을 시사하며, 또한 EELP의 세포주기 조절에 의한 항암기전을 이해하고 향후 지속적 연구를 하는 데 있어서 귀중한 기초자료로 사용될 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

Litsea populifolia, a plant species of the Lauraceae family, is widely distributed in the tropical and subtropical areas of Asia. The phylogenetic relationships and botanical characteristics of L. populifolia have been reported; however, its anti-oxidative and anti-cancer activities remain unclear. ...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • populifolia의 생육특성 및 계통학적 연구가 진행되어 왔으나, 생리활성에 관해서는 전혀 밝혀진 바가 없다[34]. 따라서, 본 연구에서는 인간 폐암세포 A549를 사용하여 L. populifolia 에탄올 추출물(Ethanol extract of L. populifolia 이하 EELP)의 항산화 활성 및 A549 세포의 세포주기조절에 의한 항암활성과 그 분자적 기전에 관하여 연구하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
세포주기는 무엇에 의해 다음 단계로 진행되는가? 세포주기는 cyclin-dependent kinase (CDK)와 cyclin 복합체(CDK/cyclin complex)의 활성화에 의해 다음 단계로 진행되며, CDK/cyclin complex의 활성제어에 의해 세포주기가 조절된다. 현재까지 보고된 바로는 CDK 저해제로 알려진 p21, p27 등에 의해 CDK 활성이 저해되어 cell cycle arrest가 야기되며, 종양억제인자인 p53에 의해 p21의 발현이 증가되는 것으로 알려져 있다[2, 35, 38].
Litsea populifolia는 무엇인가? Litsea populifolia는 녹나무과(Laurel) 녹나무속(Lauraceae)에 속하는 관목으로 아시아의 열대 및 아열대 지역에 위치하고 있으며, 일부 종은 북한 또는 남아메리카에서도 발견된다. 현재까지 L.
현재까지 진행되어 온 Litsea populifolia 관련 연구 분야는 무엇인가? 현재까지 L. populifolia의 생육특성 및 계통학적 연구가 진행되어 왔으나, 생리활성에 관해서는 전혀 밝혀진 바가 없다[34]. 따라서, 본 연구에서는 인간 폐암세포 A549를 사용하여 L.
질의응답 정보가 도움이 되었나요?

참고문헌 (42)

  1. Al-Rimawi, F., Rishmawi, S., Arigat, S. H., Khalid, M. F., Warad, I. and Salah, Z. 2016. Anticancer activity, antioxidant activity, and phenolic and flavonoids content of wild Tragopogon porrifolius plant extracts. Evid. Based Complement. Alternat. Med. 2016, 9612490. 

  2. Bartek, J. and Lukas, J. 2001. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 490, 117-122. 

  3. Bernardi, R., Liebermann, D. A. and Hoffman, B. 2000. Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation. Oncogene 19, 2447-2454. 

  4. Bertero, T., Gastaldi, C., Bourget-Ponzio, I., Mari, B., Meneguzzi, G., Barbry, P., Ponzio, G. and Rezzonico, R. 2013. Cdc25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ. 20, 800-811. 

  5. Biomberg, I. and Hoffmann, I. 1999. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol. Cell Biol. 19, 6183-6194. 

  6. Cai, Z., Chehab, N. H. and Pavletich, N. P. 2009. Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol. Cell 35, 818-829. 

  7. Choi, I. P. 2013. Reactive oxygen species and cancer. Hanyang Med. Rev. 33, 118-122. 

  8. Coulonval, K., Nockstaele, L., Paternot, S. and Roger, P. P. 2003. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J. Biol. Chem. 278, 52052-52060. 

  9. Devasagayam, T. P., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S. and Lele, R. D. 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India 52, 794-804. 

  10. Dickinson, B. C. and Chang, C. J. 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504-511. 

  11. Donzelli, M. and Draetta, G. F. 2003. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4, 671-677. 

  12. Dorai, T. and Aggarwal, B. B. 2004. Role of chemopreventive agents in cancer therapy. Cancer Lett. 215, 129-140. 

  13. Dulic, V., Kaufmann, W. K., Wilson, S. J., Tisty, T. D., Lees, E., Harper, J. W., Elledge, S. J. and Reed, S. I. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013-1023. 

  14. Eymin, B., Claverie, P., Salon, C., Leduc, C., Col, E., Brambilla, E., Khochbin, S. and Gazzeri, S. 2006. p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol. Cell Biol. 26, 4339-4350. 

  15. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. and Lukas, J. 2001. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847. 

  16. Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M. and Beach, D. 1995. CDC25 phosphatases as potential human oncogenes. Science 269, 1575-1577. 

  17. Gasparotto, D., Maestro, R., Piccinin, S., Vukosavljevic, T., Barzan, L., Sulfaro, S. and Boiocchi, M. 1997. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res. 57, 2366-2368. 

  18. GBD 2015 Risk Factors Collaborators. 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659-1724. 

  19. Gonzalez-Burgos, E. and Gomez-Serranillos, M. P. 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19, 5319-5341. 

  20. Halliwell, B. H. and Gutteridge, J. M. C. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1-85. 

  21. Hanahan, D. and Weinberg, R. A. 2000. The hallmarks of cancer. Cell 100, 57-65. 

  22. Hartwell, L. H. and Kastan, M. B. 1994. Cell cycle control and cancer. Science 266, 1821-1828. 

  23. Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374. 

  24. Ito, Y., Yoshida, H., Uruno, T., Takamura, Y., Miya, A., Kuma, K. K. and Miyauchi, A. 2004. Expression of cdc25A and cdc25B phosphatase in breast carcinoma. Breast Cancer 11, 295-300. 

  25. Jin, P., Gu, Y. and Morgan, D. O. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134, 963-970. 

  26. Kedare, S. B. and Singh, R. P. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48, 412-422. 

  27. Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J. and Lukas, J. 2000. Rapid destruction of Cdc 25A in response to DNA damage. Science 288, 1425-1429. 

  28. Malumbres, M. and Barbacid, M. 2009. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166. 

  29. Mraz, M., Malinova, K., Kotaskova, J., Pavlova, S., Tichy, B., Malcikova, J., Stano, K. K., Smardova, J., Brychtova, Y., Doubek, M., Trbusek, M., Mayer, J. and Pospisilova, S. 2009. miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia 23, 1159-1163. 

  30. Neergheen, V. S., Bahorun, T., Taylor, E. W., Jen, L. S. and Aruoma, O. I. 2010. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278, 229-241. 

  31. Niedzwiecki, A., Roomi, M. W., Kalinovsky, T. and Rath, M. 2016. Anticancer efficacy of polyphenols and their combinations. Nutrients 8, E552. 

  32. Nilsson, I. and Hoffmann, I. 2000. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res. 4, 107-114. 

  33. O'Connor, P. M. 1997. Mammalian G1 and G2 phase checkpoints. Cancer Surv. 29, 151-182. 

  34. Rix, M. 2013. LITSEA POPULIFOLIA. Curtis's Botanical Magazine 30, 193-200. 

  35. Ryan, K. M., Phillips, A. C. and Vousden, K. H. 2001. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol. 13, 332-337. 

  36. Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic -phosphotungstic acid reagents. Am. J. Enol.Vitic. 16, 144-158. 

  37. Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149. 

  38. Vogelstein, B., Lane, D. and Levine, A. J. 2000. Surfing the p53 network. Nature 408, 307-310. 

  39. Wu, W., Fan, Y. H., Kemp, B. L., Walsh, G. and Mao, L. 1998. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 58, 4082-4085. 

  40. Xu, X., Yamamoto, H., Liu, G., Ito, Y., Ngan, C. Y., Kondo, M., Nagano, H., Dono, K., Sekimoto, M. and Monden, M. 2008. CDC25A inhibition suppresses the growth and invasion of human hepatocellular carcinoma cells. Int. J. Mol. Med. 21, 145-152. 

  41. Xu, X., Yamamoto, H., Sakon, M., Yasui, M., Ngan, C. Y., Fukunaga, H., Morita, T., Ogawa, M., Nagano, H., Nakamori, S., Sekimoto, M., Matsuura, N. and Monden, M. 2003. Overexpression of CDC25A phosphatase is associated with hypergrowth activity and poor prognosis of human hepatocellular carcinomas. Clin. Cancer Res. 9, 1764-1772. 

  42. Zhou, B. B. and Elledge, S. J. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408, 433-439. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로