$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Bacillus thuringiensis 유래 Vip3Aa 단백질 순수분리 및 꿀벌 (Apis mellifera)에 대한 위해성평가
Purification and risk assessment of Bacillus thuringiensis Vip3Aa protein against Apis mellifera 원문보기

환경생물 = Korean journal of environmental biology, v.37 no.4, 2019년, pp.585 - 591  

정영준 (국립생태원 조사안전연구본부 생태안전연구실) ,  유수향 (국립생태원 조사안전연구본부 생태안전연구실) ,  이중로 (국립생태원 조사안전연구본부 생태안전연구실)

초록
AI-Helper 아이콘AI-Helper

본 연구는 LMO 유전산물의 위해성평가를 위해 바실러스로부터 증폭된 Vip3Aa 유전자를 이용하여 대장균에서 단백질 순수분리 하였으며, MALDI-TOP 분석법을 통해 기존의 알려진 살충성 Vip3Aa 단백질과 동등한 단백질임을 증명하였다. 순수 분리한 Vip3Aa 단백질을 이용하여 꿀벌 과독성 급성섭식독성평가를 수행하였다. 그 결과 무처리군, Hepes buffer, Vip3Aa 단백질 처리군 모두 치사 및 일반 중독증상을 보이는 개체는 발견되지 않았다. 이 결과를 통해 Vip3Aa 단백질은 꿀벌에 위해성을 나타내지 않는다는 결론을 얻을 수 있었다. 본 연구 결과는 향후 국내 LMO 유전자 산물 위해성평가에 유용하게 활용될 것이라 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Most insect-resistant LMOs have been produced by applying Cry and Vip3Aa proteins. Vip3Aa protein is activated during the vegetative stage of Bacillus thuringensis (Bt) and the inhibitory activity of the Vip3Aa protein against pathogenic attacks from lepidopteran insect species is well known. Howeve...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 꿀벌에 대한 Vip3Aa 단백질의 위해성을 확인하기 위해 Vip3Aa 유전자가 삽입된 단백질 과발현 유전자를 제작하여 Vip3Aa 단백질이 발현되는 최적의 조건을 확립하였으며, 대량으로 순수분리 할 수 있는 방법을 개발하였다. 또한 Vip3Aa 단백질에 대한 꿀벌의 급성섭식독성평가를 수행하여 Vip3Aa 단백질이 꿀벌에 미치는 위해성을 확인하였다.
  • 본 연구에서 우리는 꿀벌에 대한 살충성 Vip3Aa 단백질의 위해성평가 방법을 마련하기 위해 Vip3Aa 단백질의 특성을 고려하여 대량으로 순수 분리할 수 있는 기법을 마련하였다. Vip3Aa 단백질을 대량으로 분리하기 위해 과발현용 pET28a 벡터를 이용하였고(Fig.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
화분매개 곤충 꿀벌은 어떻게 이용되고 있는가? 대표적 화분매개 곤충 꿀벌(Apis mellifera)은 유해물질 및 농약의 간접적인 영향 평가를 위해 이용되고 있으며 LMO의 위해성평가 및 환경위해성평가 대상종으로 이용되고 있다(Kim et al. 2009; Lim et al.
OECD에서 권고하는 꿀벌 위해성평가 시험은? 2017). OECD에서는 꿀벌 위해성평가 시험으로 급성섭식독성시험, 유충독성시험, semi-filed 시험 등을 권고하고 있다. 국내에서는 농촌진흥청고시 제2016-46호에 따라 급성섭식독성시험 생물로 등록되어 있기 때문에 농약 및 유해물질 등 급성섭식독성시험의 기초자료가 충분히 축적되어 있어 꿀벌을 이용한 위해성평가 연구는 결과의 해석 및 평가에 용이한 장점이 있다.
인시목에 살충성을 보이는 Vip3Aa 단백질의 작용 기작은? 2016). Vip3Aa 단백질은 표적종인 인시목 장에서 62 kDa의 형태로 잘려 활성화되고 중장 돌기에 존재하는 수용체 단백질에 부착하여 장을 마비시키고 외벽을 분해하여 살충 작용을 나타낸다(Palma et al. 2014).
질의응답 정보가 도움이 되었나요?

참고문헌 (28)

  1. Ali MI and RG Luttrell. 2011. Susceptibility of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) to Vip3A insecticidal protein expressed in VipCotTM cotton. J. Invertebr. Pathol. 108:76-84. 

  2. Baek HJ, SI Sohn, MR Cho, GS Lee, YJ Oh, JS Park, KJ Lee, SD Oh, SC Suh and TH Ryu. 2010. Development of protocol for analyzing pollinator insect-mediated gene transfer from gm crop. Korean J. Int. Agric. 22:293-297. 

  3. Bergamasco VB, DR Mendes, OA Fernandes, JA Desiderio and MV Lemos. 2013. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J. Invertebr. Pathol. 112:152-158. 

  4. Bravo A, SS Gill and M Soberon. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:42-435. 

  5. CERA. 2012. A Review of the Environmental Safety of Vip3Aa. Center for Environmental Risk Assessment. International Service for the Acquisition of Agri-biothch Applications (ISAAA). http://isaaa.org. 

  6. Chakroun M, N Banyuls, Y Bel, B Escriche and J Ferre. 2016. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic. Microbiol. Mol. Biol. Rev. 80:329-350. 

  7. Donovan WP, JC Donovan and JT Engleman. 2001. Gene knockout demonstrates that vip3a contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. J. Invertebr. Pathol. 78:45-51. 

  8. Donovan WP, JT Engleman, JC Donovan, JA Baum, GJ Bunkers, DJ Chi, WP Clinton, L English, GR Heck, OM Ilagan, KC Krasomil-Osterfeld, JW Pitkin, JK Roberts and MR Walters. 2006. Discovery and characterization of Sip1A: A novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Appl. Microbiol. Biotechnol. 72:713-719. 

  9. Estruch JJ, GW Warren, MA Mullins, GJ Nye, JA Craig and MG Koziel. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93:5389-5394. 

  10. Hilbeck A. 2001. Implications of transgenic, insecticidal plants for insect and plant biodiversity. Perspect. Plant Ecol. Evol. Syst. 4:43-61. 

  11. Hutchison WD, EC Burkness, PD Mitchell, RD Moon, TW Leslie, SJ Fleischer, M Abrahamson, KL Hamilton, KL Steffey, ME Gray, RL Hellmich, LV Kaster, TE Hunt, RJ Wright, K Pecinovsky, TL Rabaey, BR Flood and ES Raun. 2010. Area wide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222-225. 

  12. James C. 2015. 20th anniversary of the global commercialization of biotech crops (1996 to 2015) and biotech crop highlights in 2015. ISAAA Brief 51:2-3. 

  13. Kim BS, YJ Yang, YK Park, MH Jeong, AS You, KH Park and YJ Ahn. 2009. Risk assessment of fipronil on honeybee (Apis mellifera). Korean J. Pestic. Sci. 13:39-44. 

  14. Lee B, CG Kim, JY Park, H Yi, KW Park, WK Jeong, JH An, KH Cho and HM Kim. 2007. Survay of herbicide resistant oilseed rapes around the basin of rivers in Incheon harbor area. Korean J. Weed Sci. 27:29-35. 

  15. Lee B, JH Kim, SI Sohn, SJ Kweon, KW Park, YS Chung and SM Lee. 2015. Influence of insect pollinators on gene transfer from GM to nonGM soybeans. Korean J. Agric. Sci. 42:159-165. 

  16. Lemes ARN, CS Figueiredo, I Sebastiao, L Marques da Silva, R da Costa Alves, HAA de Siqueira, MVF Lemos, OA Fernandes and JA Desiderio. 2017. Cry1Ac and Vip3Aa proteins from Bacillus thuringiensis targeting Cry toxin resistance in Diatraea flavipennella and Elasmopalpus lignosellus from sugarcane. PeerJ 5:2866. 

  17. Levine TJ, SL Bachman, PM Jenson, PD Mueller, GM Uffman, JP Meng, C Song, ZK B Richards and MH Beevers. 2015. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. Environ. Toxicol. Chem. 35:287-294. 

  18. Lim HS, YJ Jung, IR Kim, J Kim, S Ryu, B Kim, JR Lee and W Choi. 2017. Acute oral toxicity of dsRNA to honeybee, Apis mellifera. Korean J. Environ. Agric. 36:241-248. 

  19. Milne R, Y Liu, D Gauthier and K Frankenhuyzen. 2008. Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). J. Invertebr. Pathol. 99:166-172. 

  20. Palma L, D Munoz, C Berry, J Murillo and P Caballero. 2014. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 6:3296-3325. 

  21. Park KW, CK Kim, R Lee, DY Kim, JY Park, DI Kim, MC Kwon, H Yi and HM Kim. 2007. Monitoring of imported genetically modified crops in the cultivated fields in Korea. Korean J. Weed Sci. 27:318-324. 

  22. Park SC, IR Kim, JE Hwang, JY Kim, YJ Jung, W Choi, Y Lee, MK Jang and JR Lee. 2019. Functional mechanisms underlying the antimicrobial activity of the Oryza sativa Trx-like protein. Int. J. Mol. Sci. 20:1413. 

  23. Park T, H Choe, H Jeong, H Jang, J Kim and JJ Park. 2018. Comparison of insect fauna in transgenic and common rice paddy fields. Korean J. Environ. Biol. 36:488-497. 

  24. Patricia HM, SHR Carmen, VR Jeroen, E Baltasar and F Juan. 2013. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. J. Invertebr. Pathol. 113:78-81. 

  25. Quist D and IH Chapela. 2001. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414: 541-543. 

  26. Romeis J, D Bartsch, F Bigler, MP Candolfi, MMC Gielkens, SE Hartley, RL Hellmich, JE Huesing, PC Jepson, R Layton, H Quemada, A Raybould, RI Rose, J Schiemann, MK Sears, AM Shelton, J Sweet, Z Vaituzis and JD Wolt. 2008. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat. Biotechnol. 26:203-208. 

  27. Schnepf E, NV Crickmore, J van Rie, D Lereclus, J Baum, J Feitelson, DR Zeigler and DH Dean. 1988. Bacillus thuringiensis and its pesticidal Crystal proteins. Microbiol. Mol. Biol. Rev. 62:775-806. 

  28. Warren GW, MG Koziel, MA Mullins, GJ Nye, B Carr, NM Desai, K Kostichka, NB Duck and JJ Estruch. 1998. Auxiliary proteins for enhancing the insecticidal activity of pesticidal proteins. U.S. Patent No. 5,770,696. US Patent and Trademark Office. Washington, DC. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로