$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

주암호 유해남조류 출현양상과 환경요인 변화
Variation of cyanobacteria occurrence pattern and environmental factors in Lake Juam 원문보기

환경생물 = Korean journal of environmental biology, v.37 no.4, 2019년, pp.640 - 651  

정현수 (국립환경과학원 영산강물환경연구소) ,  손미선 (국립환경과학원 영산강물환경연구소) ,  류희성 (국립환경과학원 영산강물환경연구소) ,  박창희 (국립환경과학원 영산강물환경연구소) ,  이루리 (국립환경과학원 금강물환경연구소) ,  조미선 (국립환경과학원 영산강물환경연구소) ,  임채홍 (국립환경과학원 영산강물환경연구소) ,  박종환 (국립환경과학원 영산강물환경연구소) ,  김경현 (국립환경과학원 영산강물환경연구소)

초록
AI-Helper 아이콘AI-Helper

본 연구는 2005년부터 2018년까지 14년간 주암호에서 출현한 남조류천이 양상을 분석하여, 남조류에 영향을 미친 주요 환경요인과의 관계를 파악하고자 연구를 수행하였다. 특히 2012년 이후 유해남조류(Harmful algae) 출현량 급감의 원인을 파악하고자 하였다. 조사기간 동안 두 지점의 유해남조류 현존량은 주암댐: 10~24,891 cells mL-1, 신평: 13~26,043 cells mL-1의 범위로 출현하였다. 전반기 시기 두 지점의 평균 현존량은 각각 2,575 cells mL-1, 2,557 cells mL-1로, 이는 후반기 시기 평균 현존량(42 cells mL-1, 82 cells mL-1)에 비해 약 60배, 30배의 큰 세포수 차이를 보였다. 남조류가 상대적으로 많이 출현하는 여름 시기(6~9월)를 대상으로 상관분석을 실시한 결과, 유해남조류는 TN, 방류량, 저수량과 양의 상관관계를 보였고, 전기전도도와는 음의 상관관계를 보였다. t-검정 결과 TN, EC, 체류시간의 유의미한 차이를 확인하였다. 특히 TN은 0.566~1.292 mg L-1의 범위로 평균 0.862 mg L-1로 보였다. 전반기, 후반기 평균 TN은 전반기 0.912 mg L-1, 후반기 0.811 mg L-1로 감소하였다. 또한 유의확률은 다소 떨어지지만, TP의 경우 평균 차이는 없으나 표준편차가 비교적 큰 차이를 보여 변동성이 큼을 알 수 있었다. 강우량이 집중된 여름(6~9월) 시기의 전반기와 후반기 강우량 감소하는 패턴이 원인인 것으로 판단된다(전반기 263.3 mm, 후반기 219.9 mm). 즉, 전반기에 비해 강우량은 감소하였으며, 이로 인해 TP의 변동성이 감소되었다고 판단된다. TP의 변동성의 감소로 인해 전반기에 남조류의 luxury consumption이 가능하여 남조류의 성장률이 높았을 것으로 추측된다. 따라서 주암호 유해남조류 감소 원인은 강우량의 감소로 인한 영양염의 감소(TN) 및 변동성의 감소(TP)의 결과로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

The study analyzed the relationship between harmful cyanobacteria and physicochemical factors in Lake Juam from 2005 to 2018. The research locations were designated St. 1 (Juam-Dam) and St. 2 (Sinpyong). Harmful cyanobacteria was found in four genera (Microcystis sp., Anabaena sp., Aphanizomenon sp....

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 2005년부터 2018년까지 14년 간 주암호에서 출현한 남조류의 천이 양상을 분석하여, 남조류에 영향을 미친 주요 환경요인과의 관계를 파악하고자 연구를 수행하였다. 특히 2012년 이후 유해남조류(Harmful algae) 출현량 급감의 원인을 파악하고자 하였다.
  • 2016). 본 연구는 지난 14년간 주암호에서 출현한 남조류의 천이 양상을 분석하고, 이 과정에서 영향을 미친 주요 환경요인과의 관계를 규명하였다. 특히 2012년 이후 유해 남조류(Harmful-cyanobacteria) 출현량 급감의 원인을 파악하고자 하였다.
  • 본 연구는 지난 14년간 주암호에서 출현한 남조류의 천이 양상을 분석하고, 이 과정에서 영향을 미친 주요 환경요인과의 관계를 규명하였다. 특히 2012년 이후 유해 남조류(Harmful-cyanobacteria) 출현량 급감의 원인을 파악하고자 하였다.
  • 본 연구는 2005년부터 2018년까지 14년 간 주암호에서 출현한 남조류의 천이 양상을 분석하여, 남조류에 영향을 미친 주요 환경요인과의 관계를 파악하고자 연구를 수행하였다. 특히 2012년 이후 유해남조류(Harmful algae) 출현량 급감의 원인을 파악하고자 하였다. 조사기간 동안 두 지점의 유해남조류 현존량은 주암댐: 10~24,891 cells mL-1,신평: 13~26,043 cells mL-1의 범위로 출현하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
호수에서 물의 유입량의 증가는 일반적으로 남조류에 어떤 영향을 끼치는가? 3). 일반적으로 유입량의 증가는 체류 시간을 감소시켜 남조류의 증식을 방해하는 인자이다(Park et al. 2005; Ryu et al.
남조류가 동일 분류군 내 종 특이성이 높은 이유는 무엇인가? 남조류는 다른 생물군에 비하여, 동일 분류군 내 종 특이성이 높은 생물군이다. 이는 진핵생물인 다른 조류에 비하여 원핵생물로만 구성되어 있어 유전자 변이의 발생율이 높기 때문이다(Cires and Ballot 2016). 특히 남조류에 대한 생리생태학적 연구는 Microcystis와 같은 특정 분류군을 대상으로 주로 수행되어 있기 때문에, 현장에서 이루어지는 전체 남조류의 천이 현상을 설명하는 것은 한계가 있다(Yamamoto and Nakahara 2009).
본 연구 결과 주암호 유해남조류가 감소한 원인은 무엇인가? TP의 변동성의 감소로 인해 전반기에 남조류의 luxury consumption이 가능하여 남조류의 성장률이 높았을 것으로 추측된다. 따라서 주암호 유해남조류 감소 원인은 강우량의 감소로 인한 영양염의 감소(TN) 및 변동성의 감소(TP)의 결과로 사료된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (49)

  1. An KG, JW Seo and SS Park. 2001. Influences of seasonal rainfall on physical, chemical and biological conditions near the intake tower of Taechung reservoir. Korean J. Limnol. 34:327-336. 

  2. Cho HJ, JE Na, MH Jung and HY Lee. 2017. Relationship between phytoplankton community and water quality in Lakes in Jeonnam using SOM. Korean J. Limnol. 50:148-156. 

  3. Cho KA and HY Lee. 2018. Typoon induces changes of the phytoplankton at Bok-gyo bridge area in Juam Lake. Korean J. Ecol. Environ. 51:253-258. 

  4. Chung J. 1993. Illustration of the Freshwater Algae of Korea. Academy Publishing Company. Seoul. p. 496. 

  5. Cires S and A Ballot. 2016. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostrocales (Cyanobacteria). Harmful Algae 52:21-43. 

  6. Faithful JW and DJ Griffiths. 2000. Turbid flow through a tropical reservoir (Lake Dalrymple, Queensland, Australia): Responses to summer storm event. Lake Reserv. Manag. 5:231-247. 

  7. Han MS, HR Lee, SS Hong, YO Kim, K Lee, YK Choi, SH Kim and KI Yoo. 2002. Ecological studies on Togyo Reservoir in Chulwon, Korea. V. Seasonal changes of size-fractionated standing crops and chlorophyll -a of phytoplankton in Kyungan stream of Paldang river-reservoir systems and Togyo reservoir, Korea. Korean J. Environ. Biol. 20:91-99. 

  8. Harke MJ, MM Steffen, CH Gobler, TG Otten, SW Wilhelm, SA Wood and HW Paerl. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4-20. 

  9. Havens KE. 2008. Cyanobacteria blooms: effects on aquatic ecosystems. pp. 675-732. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research (Hundell KH, ed.). Springer, New York. 

  10. Jang YH, JP Cheong, HJ Cho, SH Lee, SM Lee and NI Chang. 2004. Characteristic of atmospheric dry deposition of nitrogen-containing compounds and the spatial identification of potential pollution sources at Juam reservoir. pp. 585-588. In Proceedings of KSEE. Kyungsung University. Busan, Korea. 

  11. Jeong EJ, JE Na, GM Kim, SS Shim and HY Lee. 2010. Water temperature and community of phytoplankton in Youngsan River, Korea. Korean J. Environ. Biol. 28:56-63. 

  12. K-water. 2019. Water Information. Korean Water Resources Corporation. Daejeon, Korea. http://water.or.kr/. 

  13. Kim SJ, HJ Song, TJ Park, MY Hwang, HS Cho, KD Song, HJ Lee and YS Kim. 2015. Survey on Lake environments in the Yeongsan and Seomjin river basins - based on 10 lakes such as Hadong and Sangsa. J. Korean Soc. Water Environ. 31:665-679. 

  14. KMA. 2019. Korea Weather Information (KMI). Korea Meteorological Administration. Seoul. http://www.kma.go.kr/. 

  15. Krammer K and H Lange-bertalot. 2007. SusBwasserflora von Mitteleuropa, Band 2/1: Bacillariophyceae 1. Teil: Naviculaceae (Ettl H, J Gerloff, H Heying and D Mollenhauer, eds.). Elsevier Book Co., Germany. 

  16. Lasson U and A Hagatrom. 1982. Fractionated phytoplankton primary production in Baltic eutrophication gradient. Mar. Biol. 67:57-70. 

  17. Lee OM, MS Yoo, BI Lee and AS Lim. 2008. The distribution and standing crop of phytoplankton at the estuaries of Galgok stream and Incheon river in Jeollanam-do. Algae 23:257-268. 

  18. Lee SH. 2010. Effect of nutrient concentration and stoichiometry on the phytoplankton growth and phosphorus uptake. MS thesis, Konkuk University, Seoul. pp. 4-6. 

  19. Lee SJ, BC Lim, GH Lee, WG Jeong, BN Hur and IR Hur. 2016. Long term monitoring for the control of cyanobacterial blooms in Lake Uiam. J. Korean Soc. Environ. Anal. 19:109-118. 

  20. Lomas MW and Gilbert PM. 1999. Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatom. Limnol. Oceanogr. 44:556-572. 

  21. Ma H, Y Wu, N Gan, L Zheng, T Li and L Song. 2015. Growth inhibitory effect of microcystis on Aphanizomenon flos-aquae isolated from cyanobacteria bloom in Lake Dianchi, China. Harmful Algae 42:43-51. 

  22. Ma XC, BS Lim, SU Heo and MA Kwak. 2015. Variation of water quality around the Chudong intake tower in Daechung reservoir. J. Korean Soc. Water Environ. 31:637-643. 

  23. Masaru A, I Teru, I Kozo, K Hideo, K Shigeru, K Hiromu, T Eigi, T Kohei, H Minoru and Y Takaaki. 1997. Illustration of the Japanese Fresh-water Algae. Uchidarokakuho Publishing Company, Japan. 

  24. MOE. 2011. Standard Method for the Examination of Water Pollution. Ministry of Environment. Sejong, Korea. 

  25. MOE. 2019. Water Environment Information system (WEIS). Ministry of Environment. Sejong, Korea. http://water.nier.go.kr/waterMeasuremnet/selectWater.do. 

  26. Murnell MC and EM Lores. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. J. Plankton Res. 26:371-382. 

  27. Noh SY, HK Park, HL Choi and JA Lee. 2014. Effect of climate change for cyanobacteria growth pattern in Chudong station of Lake Daechung. J. Korean Soc. Water Environ. 30:377-385. 

  28. Odate T, M Yanada, H Mizuta and Y Maita. 1993. Phytoplankton carbon biomass estimated from the size-fractionated chlorophyll alpha concentration and cell density in the Northern Costal Wasters from Spring bloom to summer. Bull. Plankton Soc. 39:127-144. 

  29. Oh EH, HS Lim, GW Ahn, HH Lee, JS Park and SI Yang. 2015. The characteristic of TOC, COD/BOD on Youngsan River Basin. J. Korean Soc. Water Environ. 18:38-48. 

  30. Oh HM and GY Rhee. 1991. A comparative study of microalgae isolated from flooded rice paddies: light-limited growth C fixation, growth efficiency and relative N and P requirement. J. Appl. Phycol. 3:211-220. 

  31. Paerl HW, WS Gardner, MJ McCarthy, BL Peierls and SW Wilhelm. 2014. Algal blooms: Noteworthy nitrogen. Science 346:175. 

  32. Park HK, HJ Lee, EK Kim and DI Jung. 2005. Characteristics of algal abundance and statistical analysis of environmental factors in Lake Paldang. J. Korean Soc. Water Environ. 21:584-594. 

  33. Park MH, BJ Lim, WB Seo, CH Park, KH Kim and SJ Hwang. 2015. Akinete germination and algal growth potential test of cyanobacterium Anabaena circinalis on different water in Lake Paldang. Korean J. Ecol Environ. 48:287-295. 

  34. Park SW, HW Lee, YS Lee and SS Park. 2013. A hydrodinamic modeling study to analyze the water plum and mixing pattern of the Lake Euiam. Korean J. Limnol. 46:488-498. 

  35. Reynolds CS. 2006. The Ecology of Phytoplankton. Cambridge University press. New York. p. 535. 

  36. Rita B, CS Domingues and G Helena. 2007. Impact of reservoir filling on phytoplankton succession and cyanobacteria blooms in a temperate estuary. Estuar. Coast. Shelf Sci. 74:31-43. 

  37. Ryu HS, HK Park, HJ Lee, RY Shin and SU Cheon. 2016. Occurrence and succession pattern of cyanobacteria in the upper region of the Nakdong river: factors influencing Apanizomenon bloom. J. Korean Soc. Water Environ. 32:52-59. 

  38. Shun JK, SJ Hwang, CK Kang and HS Kim. 2003. Limnological characteristics of the river-type Paldang reservoir, Korea: hydrological and environmental factors. Korean J. Limnol. 36:242-256. 

  39. Simonsen R. 1979. The diatom system: ideas on phylogeny. Bacillaria 2:9-71. 

  40. Sivarajah B, KM Ruhland, AL Labaj, AM Paterson and JP Snik. 2016. Why is the relative abundance of Asterionella formosa increasing in a Boreal Shield lake as nutrient level decline? J. Paleolimnol. 55:357-367. 

  41. Smith VH. 1983. Low nitrogen to phosphorus ratios favor dominance by blue algae in lake phytoplankton. Science 221:669-671. 

  42. Song HJ, KS Hwang, JH Park, HY Lee, JS Kim, HW Kim, DO Lim, SH Lee and BJ Lim. 2013. Water quality variation and biotic community characteristics in Juam lake. Korean J. Environ Biol. 31:37-44. 

  43. Van de Waal DB, JMH Verspagen, JF Finke, V Vournazou, AK Immers, WEA Kardinaal, L Tonk, S Becker, E van Donk, PM Visser and J Huisman. 2011. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J. 5:1438-1450. 

  44. Wilson AE, WA Wilson and ME Hay. 2006. Intraspecific variation in growth and morphology of the bloom-forming cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 72:7386-7389. 

  45. Xia L, L Xiaohua and C Yuwei. 2011. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation. Harmful Algae 10:337-343. 

  46. Yamamoto Y and H Nakahara. 2009. Life cycle of Cyanobacterium Aphanizomenon flos-aquae. Taiwania 54:113-117. 

  47. YRERC. 2005. Report on Implementing the Algae Alert System 2005. Yeongsan River Environment Research Center. Gwangju, Korea. 

  48. YRERC. 2007. Report on Implementing the Algae Alert System 2007. Yeongsan River Environment Research Center. Gwangju, Korea. 

  49. YRERC. 2007. A Study on Non-point Source Management of Upstream's Sub-watershed of Lake Juam. Yeongsan River Environment Research Center. Gwangju, Korea. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로