$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

제올라이트 MFI 자일렌 분리막 연구 동향
Review on Zeolite MFI Membranes for Xylene Isomer Separation 원문보기

멤브레인 = Membrane Journal, v.29 no.4, 2019년, pp.202 - 215  

김동훈 (전남대학교 화학공학부)

초록
AI-Helper 아이콘AI-Helper

분자체 분리막은 분자크기의 기공을 갖는 다공성 분리막으로서 크기 또는 모양을 기반으로 혼합물을 분리하며, 높은 잠재적 에너지 효율과 뛰어난 분리능으로 많은 주목을 받아왔다. 그 중, 제올라이트 MFI 분리막은 가장 오랫동안 연구된 물질 중의 하나이며, 다양한 방면으로 개발된 기술들은 이후 다른 종류의 분자체 분리막 연구에도 많은 영향을 미쳤다. 본 총설에서는, 결정성 물질인 제올라이트 MFI의 결정 생성 및 성장을 제어하여 자일렌 이성질체 혼합물에 대한 분리막의 투과도와 선택도를 향상시킨 많은 방법들을 다룬다. 씨앗결정의 형태 제어, 결정의 효과적인 이차성장법, 씨앗결정의 코팅 방법, 결정의 방향성 제어, 이종원소 도입을 통한 결정구조의 유연성 제어, 결함 관리 등, 자일렌 이성질체 분리성능의 비약적 성능 향상을 가져온 기술들을 소개한다.

Abstract AI-Helper 아이콘AI-Helper

Molecular sieve membranes separate molecules based on their size and/or shape and have been of high interest, due to their potentially high energy efficiency and high selectivity. Zeolite MFI membrane is one of the most-studied molecular sieve membranes and has affected following studies on other mo...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
분자체 물질이란 무엇인가? 분자체 물질은 분자수준의 기공크기를 갖는 다공성 물질로서, 기공보다 큰 분자를 효과적으로 배제한다. 이 특성을 기반으로, 촉매반응, 저장, 그리고 분리 등, 화학 산업에서 다방면으로 응용되었다[1].
현재 제올라이트 분리막이 갖는 한계는 무엇인가? 분리막의 성능은 보통 투과도(permeance)와 선택도(separation factor)로 나타내는데, 투과도는 분자들의 분리막을 통과하는 최단거리인 분리막의 두께에 크게 영향을 받는다. 제올라이트 분리막의 경우 생산 단가가 매우 높기 때문에($5,000~10,0000 per m2), 현재의 상용분리 공정 대비 경쟁력이 생기려면 50 nm 이하로 제작되어야 한다고 Tsapatsis가 제안하였다[8].
분자체 분리막의 기공 크기 조절이 어려운 이유는 무엇인가? 분자체 분리막은 크기 기반의 물리적 분리방법이기 때문에 기공의 크기 조절이 매우 중요하다. 범용 분리기술로 분리하기 어려운 혼합물을 분리하기 위해서는 기공 크기가 나노미터 이하의 정확도로 조절되어야 하는데, 이를 위한 기공의 크기를 높은 정밀도로 재현성 있게 조절하는 기술은 구현하기가 매우 어렵다. 반면, 제올라이트나 metal-organic framework 등의 결정형 다공성 물질들은 아주 균일한 기공을 갖고 있기 때문에 상대적으로 쉽게 높은 선택도를 달성할 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (77)

  1. 10.1038/nature00785 M. E. Davis, “Ordered porous materials for emerging applications”, Nature , 417, 813 (2002). 

  2. 10.1021/jp960226h C. D. Baertsch, H. H. Funke, J. L. Falconer, and R. D. Noble, “Permeation of aromatic hydrocarbon vapors through silicalite-zeolite membranes”, J. Phys. Chem. , 100, 7676 (1996). 

  3. 10.1002/aic.690430715 J. Coronas, J. L. Falconer, and R. D. Noble, “Characterization and permeation properties of ZSM-5 tubular membranes”, AIChE J. , 43, 1797 (1997). 

  4. 10.1021/ie960472f H. H. Funke, A. M. Argo, J. L. Falconer, and R. D. Noble, “Separations of cyclic, branched, and linear hydrocarbon mixtures through silicalite membranes”, Ind. Eng. Chem. Res. , 36, 137 (1997). 

  5. 10.1016/0376-7388(94)00120-0 T. Sano, H. Yanagishita, Y. Kiyozumi, F. Mizukami, and K. Haraya, “Separation of ethanol/water mixture by silicalite membrane on pervaporation”, J. Membr. Sci. , 95, 221 (1994). 

  6. 10.1038/532435a D. S. Sholl and R. P. Lively, “Seven chemical separations to change the world”, Nature , 532, 435 (2016). 

  7. 10.1002/anie.201601135 H. Zhang, Q. Xiao, X. Guo, N. Li, P. Kumar, N. Rangnekar, M. Y. Jeon, S. Al-Thabaiti, K. Narasimharao, S. N. Basahel, B. Topuz, F. J. Onorato, C. W. Macosko, K. A. Mkhoyan, and M. Tsapatsis, “Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports”, Angew. Chem. Int. Ed. , 55, 7184 (2016). 

  8. 10.1126/science.1205957 M. Tsapatsis, “Toward high-throughput zeolite membranes”, Science , 334, 767 (2011). 

  9. 10.1126/science.1082169 Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, and D. G. Vlachos, “Microstructural optimization of a zeolite membrane for organic vapor separation”, Science , 300, 456 (2003). 

  10. 10.1021/j100082a006 G. Muller, T. Narbeshuber, G. Mirth, and J. A. Lercher, “Infrared microscopic study of sorption and diffusion of toluene in ZSM-5”, J. Phys. Chem. , 98, 7436 (1994). 

  11. 10.1038/nmat2530 L. Karwacki, M. H. F. Kox, D. A. M. de Winter, M. R. Drury, J. D. Meeldijk, E. Stavitski, W. Schmidt, M. Mertens, P. Cubillas, N. John, A. Chan, N. Kahn, S. R. Bare, M. Anderson, J. Kornatowski, and B. M. Weckhuysen, “Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers”, Nat. Mater. , 8, 959 (2009). 

  12. 10.1021/j100277a025 C. G. Pope, “Sorption of benzene, toluene and p-xylene on silicalite and H-ZSM-5”, J. Phys. Chem. , 90, 835 (1986). 

  13. 10.1016/S0144-2449(88)80027-7 R. E. Richards and L. V. C. Rees, “The sorption of p-xylene in ZSM-5”, Zeolites , 8, 35 (1988). 

  14. 10.1107/S0108768189004519 H. van Koningsveld, F. Tuinstra, H. van Bekkum, and J. C. Jansen, “The location of p -xylene in a single crystal of zeolite H-ZSM-5 with a new, sorbate- induced, orthorhombic framework symmetry”, Acta Crystallogr. B , 45, 423 (1989). 

  15. 10.1016/S1385-8947(99)00059-5 S. Mohanty and A. V. McCormick, “Prospects for principles of size and shape selective separations using zeolites”, Chem. Eng. J. , 74, 1 (1999). 

  16. 10.1557/PROC-371-21 M. Tsapatsis, T. Okubo, M. Lovallo, and M. E. Davis, “Synthesis and structure of ultrafine zeolite KL (LTL) crystallites and their use for thin film zeolite processing”, MRS Proc. , 371, 21 (1994). 

  17. 10.1021/cm9811343 G. Xomeritakis and M. Tsapatsis, “Permeation of aromatic isomer vapors through oriented MFI-type membranes made by secondary growth”, Chem. Mater. , 11, 875 (1999). 

  18. 10.1016/S1387-1811(02)00316-5 J. Hedlund, J. Sterte, M. Anthonis, A. J. Bons, B. Carstensen, N. Corcoran, D. Cox, H. Deckman, W. de Gijnst, P. P. de Moor, F. Lai, J. McHenry, W. Mortier, J. Reinoso, and J. Peters, “High-flux MFI membranes”, Microporous Mesoporous Mater. , 52, 179 (2002). 

  19. 10.1016/0144-2449(94)90191-0 A. E. Persson, B. J. Schoeman, J. Sterte, and J.-E. Otterstedt, “The synthesis of discrete colloidal particles of TPA-silicalite-1”, Zeolites , 14, 557 (1994). 

  20. 10.1016/S1387-1811(99)00064-5 Q. Li, D. Creaser, and J. Sterte, “The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis”, Microporous Mesoporous Mater. , 31, 141 (1999). 

  21. 10.1038/nmat2302 W. Fan, M. A. Snyder, S. Kumar, P.-S. Lee, W. C. Yoo, A. V. McCormick, R. L. Penn, A. Stein, and M. Tsapatsis, “Hierarchical nanofabrication of microporous crystals with ordered mesoporosity”, Nat. Mater. , 7, 984 (2008). 

  22. 10.1002/anie.201004029 W. C. Yoo, J. A. Stoeger, P. S. Lee, M. Tsapatsis, and A. Stein, “High-performance randomly oriented zeolite membranes using brittle seeds and rapid thermal processing”, Angew. Chem. Int. Ed. , 49, 8699 (2010). 

  23. 10.1126/science.1212472 T. C. T. Pham, H. S. Kim, and K. B. Yoon, “Growth of uniformly oriented silica MFI and BEA zeolite films on substrates”, Science , 334, 1533 (2011). 

  24. 10.1021/cm048854w G. Bonilla, I. Díaz, M. Tsapatsis, H. K. Jeong, Y. Lee, and D. G. Vlachos, “Zeolite (MFI) crystal morphology control using organic structure-directing agents”, Chem. Mater. , 16, 5697 (2004). 

  25. 10.1021/acs.chemmater.6b03887 S. H. Keoh, W. Chaikittisilp, K. Muraoka, R. R. Mukti, A. Shimojima, P. Kumar, M. Tsapatsis, and T. Okubo, “Factors governing the formation of hierarchically and sequentially intergrown MFI zeolites by using simple diquaternary ammonium structure-directing agents”, Chem. Mater. , 28, 8997 (2016). 

  26. 10.1126/science.1208891 K. Varoon, X. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C. Y. Sung, M. Cococcioni, L. F. Francis, A. V. McCormick, K. A. Mkhoyan, and M. Tsapatsis, “Dispersible exfoliated zeolite nanosheets and their application as a selective membrane”, Science , 334, 72 (2011). 

  27. 10.1038/nature21421 M. Y. Jeon, D. Kim, P. Kumar, P. S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee, K. Narasimharao, S. N. Basahel, S. Al-Thabaiti, W. Xu, H. J. Cho, E. O. Fetisov, R. Thyagarajan, R. F. DeJaco, W. Fan, K. A. Mkhoyan, J. I. Siepmann, and M. Tsapatsis, “Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets”, Nature , 543, 690 (2017). 

  28. 10.1002/anie.201708835 D. Kim, M. Y. Jeon, B. L. Stottrup, and M. Tsapatsis, “para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface”, Angew. Chem. Int. Ed. , 57, 480 (2018). 

  29. 10.1002/aic.690440820 M. C. Lovallo, A. Gouzinis, and M. Tsapatsis, “Synthesis and characterization of oriented MFI membranes prepared by secondary growth”, AIChE J. , 44, 1903 (1998). 

  30. 10.1002/aic.13851 X. Chen, J. Wang, D. Yin, J. Yang, J. Lu, Y. Zhang, and Z. Chen, “High-performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method”, AIChE J. , 59, 936 (2013). 

  31. 10.1021/la0601206 J. A. Lee, L. Meng, D. J. Norris, L. E. Scriven, and M. Tsapatsis, “Colloidal crystal layers of hexagonal nanoplates by convective assembly”, Langmuir , 22, 5217 (2006). 

  32. 10.1021/ja0270569 J. S. Park, G. S. Lee, Y.-J. Lee, Y. S. Park, and K. B. Yoon, “Organization of microcrystals on glass by adenine-thymine hydrogen bonding”, J. Am. Chem. Soc. , 124, 13366 (2002). 

  33. 10.1039/C4CC06603K M. Zhou, M. Grahn, H. Zhou, A. Holmgren, and J. Hedlund, “The facile assembly of nanocrystals by optimizing humidity”, Chem. Commun. , 50, 14261 (2014). 

  34. 10.1016/j.memsci.2009.12.029 A. Huang, F. Liang, F. Steinbach, and J. Caro, “Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker”, J. Membr. Sci. , 350, 5 (2010). 

  35. 10.1021/ja010517q G. S. Lee, Y.-J. Lee, and K. B. Yoon, “Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers”, J. Am. Chem. Soc. , 123, 9769 (2001). 

  36. 10.1039/b205046c Y. S. Chun, K. Ha, Y.-J. Lee, J. S. Lee, H. S. Kim, Y. S. Park, and K. B. Yoon, “Diisocyanates as novel molecular binders for monolayer assembly of zeolite crystals on glass”, Chem. Commun. , 17, 1846 (2002). 

  37. 10.1002/adma.200401457 J. S. Lee, K. Ha, Y.-J. Lee, and K. B. Yoon, “Ultrasound-aided remarkably fast assembly of monolayers of zeolite crystals on glass with a very high degree of lateral close packing”, Adv. Mater. , 17, 837 (2005). 

  38. 10.1002/anie.200604367 J. S. Lee, J. H. Kim, Y. J. Lee, N. C. Jeong, and K. B. Yoon, “Manual assembly of microcrystal monolayers on substrates”, Angew. Chemie. , 46, 3087 (2007). 

  39. 10.1021/ar000119c K. B. Yoon, “Organization of zeolite microcrystals for production of functional materials”, Acc. Chem. Res. , 40, 29 (2007). 

  40. 10.1002/adma.201405893 K. V. Agrawal, B. Topuz, T. C. T. Pham, T. H. Nguyen, N. Sauer, N. Rangnekar, H. Zhang, K. Narasimharao, S. N. Basahel, L. F. Francis, C. W. Macosko, S. Al-Thabaiti, M. Tsapatsis, and K. B. Yoon, “Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers”, Adv. Mater. , 27, 3243 (2015). 

  41. 10.1021/ja01317a513 K. B. Blodgett, “Monomolecular films of fatty acids on glass”, J. Am. Chem. Soc. , 56, 495 (1934). 

  42. 10.1021/ja01273a023 I. Langmuir and V. J. Schaefer, “Activities of urease and pepsin monolayers”, J. Am. Chem. Soc. , 60, 1351 (1938). 

  43. 10.1002/smll.200901120 R. Y. N. Gengler, A. Veligura, A. Enotiadis, E. K. Diamanti, D. Gournis, C. Józsa, B. J. van Wees, and P. Rudolf, “Large-yield preparation of high-electronic- quality graphene by a langmuir-schaefer approach”, Small , 6, 35 (2010). 

  44. 10.1038/nmat2769 R. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata, and H. Kitagawa, “Surface nano-architecture of a metal-organic framework”, Nat. Mater. , 9, 565 (2010). 

  45. 10.1016/S0927-7757(01)00987-6 K. Morawetz, J. Reiche, H. Kamusewitz, H. Kosmella, R. Ries, M. Noack, and L. Brehmer, “Zeolite films prepared via the Langmuir - Blodgett technique”, Colloids Surfaces A Physicochem. Eng. Asp. , 198-200, 409 (2002). 

  46. 10.1021/cm0716856 Z. Wang, L. H. Wee, B. Mihailova, K. J. Edler, and A. M. Doyle, “Langmuir - Blodgett deposited monolayers of silicalite-1 seeds for secondary growth of continuous zeolite films”, Chem. Mater. , 19, 5806 (2007). 

  47. 10.1002/aic.14099 K. V. Agrawal, B. Topuz, Z. Jiang, K. Nguenkam, B. Elyassi, L. F. Francis, M. Tsapatsis, and M. Navarro, “Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation”, AIChE J. , 59, 3458 (2013). 

  48. 10.1021/ie970338a M. Nomura, T. Yamaguchi, and S. Nakao, “Silicalite membranes modified by counterdiffusion CVD technique”, Ind. Eng. Chem. Res. , 36, 4217 (1997). 

  49. 10.1002/adfm.200800054 B. Zhang, C. Wang, L. Lang, R. Cui, and X. Liu, “Selective defect-patching of zeolite membranes using chemical liquid deposition at organic/aqueous interfaces”, Adv. Funct. Mater. , 18, 3434 (2008). 

  50. 10.1021/ja909888v Y. Liu, Y. Li, and W. Yang, “Fabrication of highly b -oriented MFI film with molecular sieving properties by controlled in-plane secondary growth”, J. Am. Chem. Soc. , 132, 1768 (2010). 

  51. 10.1002/ange.200503011 J. Choi, S. Ghosh, Z. Lai, and M. Tsapatsis, “Uniformly a -oriented MFI zeolite films by secondary growth. Angew”, Chem. Int. Ed. , 118, 1172 (2006). 

  52. 10.1039/c1ce05094j X. Li, Y. Peng, Z. Wang, and Y. Yan, “Synthesis of highly b -oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth”, Cryst. Eng. Comm. , 13, 3657 (2011). 

  53. 10.1002/anie.201412482 Y. Peng, X. Lu, Z. Wang, and Y. Yan, “Fabrication of b -oriented MFI zeolite films under neutral conditions without the use of hydrogen fluoride”, Angew. Chem. Int. Ed. , 54, 5709 (2015). 

  54. 10.1039/c2cc18111h Y. Liu, Y. Li, R. Cai, and W. Yang, “Suppression of twins in b -oriented MFI molecular sieve films under microwave irradiation”, Chem. Commun. , 48, 6782 (2012). 

  55. 10.1002/anie.201607063 M. Shete, M. Kumar, D. Kim, N. Rangnekar, D. Xu, B. Topuz, K. V. Agrawal, E. Karapetrova, B. Stottrup, S. Al-Thabaiti, S. Basahel, K. Narasimharao, J. D. Rimer, and M. Tsapatsis, “Nanoscale control of homoepitaxial growth on a two-dimensional zeolite”, Angew. Chem. Int. Ed. , 56, 535 (2017). 

  56. 10.1021/acs.chemmater.8b01346 D. Kim, M. Shete, and M. Tsapatsis, “Large-grain, oriented, and thin zeolite mfi films from directly synthesized nanosheet coatings”, Chem. Mater. , 30, 3545 (2018). 

  57. 10.1002/anie.201301766 T. C. T. Pham, T. H. Nguyen, and K. B. Yoon, “Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation”, Angew. Chem. Int. Ed. , 52, 8693 (2013). 

  58. 10.1021/jacs.9b00018 X. Lu, Y. Yang, J. Zhang, Y. Yan, and Z. Wang, “Solvent-free secondary growth of highly b -oriented MFI zeolite films from anhydrous synthetic powder”, J. Am. Chem. Soc. , 141, 2916 (2019). 

  59. 10.1002/anie.201906559 Q. Wu, L. Zhu, Y. Chu, X. Liu, C. Zhang, J. Zhang, H. Xu, J. Xu, F. Deng, Z. Feng, X. Meng, and F.-S. Xiao, “Sustainable synthesis of pure silica zeolites from a combined strategy of zeolite seeding and alcohol filling”, Angew. Chem. Int. Ed. , 58, 12138 (2019). 

  60. 10.1021/ie000553i C. J. Gump, V. A. Tuan, R. D. Noble, and J. L. Falconer, “Aromatic permeation through crystalline molecular sieve membranes”, Ind. Eng. Chem. Res. , 40, 565 (2001). 

  61. K. Wegner, J. Dong, and Y. S. Lin, “Polycrystalline MFI zeolite membranes: Xylene pervaporation and its implication on membrane microstructure”, J. Membr. Sci. , 158, 17 (1999). 

  62. 10.1016/j.memsci.2008.04.023 J. O’Brien-Abraham, M. Kanezashi, and Y. S. Lin, “Effects of adsorption-induced microstructural changes on separation of xylene isomers through MFI-type zeolite membranes”, J. Membr. Sci. , 320, 505 (2008). 

  63. 10.1016/S0376-7388(00)00462-2 T. Matsufuji, N. Nishiyama, M. Matsukata, and K. Ueyama, “Separation of butane and xylene isomers with MFI-type zeolitic membrane synthesized by a vapor-phase transport method”, J. Membr. Sci. , 178, 25 (2000). 

  64. 10.1016/S0376-7388(98)00133-1 K. Keizer, A. J. Burggraaf, Z. A. E. P. Vroon, and H. Verweij, “Two component permeation through thin zeolite MFI membranes”, J. Membr. Sci. , 147, 159 (1998). 

  65. 10.1016/S1387-1811(99)00300-5 G. Xomeritakis, S. Nair, and M. Tsapatsis, “Transport properties of alumina-supported MFI membranes made by secondary (seeded) growth”, Microporous Mesoporous Mater. , 38, 61 (2000). 

  66. 10.1007/978-94-010-9529-7 R. Szostak, Molecular Sieves , Principles of Synthesis and Identification , Van Nostrand Reinhold: New York (1989). 

  67. 10.1016/j.micromeso.2010.04.006 Z. Deng, C.-H. Nicolas, Y. Guo, A. Giroir-Fendler, and M. Pera-Titus, “Synthesis and characterization of nanocomposite B-MFI-alumina hollow fibre membranes and application to xylene isomer separation”, Microporous Mesoporous Mater. , 133, 18 (2010). 

  68. 10.1021/ie900926t J. O’Brien-Abraham and Y. S. Lin, “Effect of isomorphous metal substitution in zeolite framework on pervaporation xylene-separation performance of MFI-type zeolite membranes”, Ind. Eng. Chem. Res. , 49, 809 (2010). 

  69. 10.1016/S0376-7388(96)00206-2 Y. Yan, M. E. Davis, and G. R. Gavalas, “Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment”, J. Membr. Sci. , 123, 95 (1997). 

  70. 10.1016/S1387-1811(99)00175-4 J. Dong, Y. S. Lin, M. Z.-C. Hu, R. A. Peascoe, and E. A. Payzant, “Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes”, Microporous Mesoporous Mater. , 34, 241 (2000). 

  71. 10.1126/science.1176095 J. Choi, H.-K. Jeong, M. A. Snyder, J. A. Stoeger, R. I. Masel, and M. Tsapatsis, “Grain boundary defect elimination in a zeolite membrane by rapid thermal processing”, Science , 325, 590 (2009). 

  72. 10.1016/S0376-7388(99)00069-1 J. Hedlund, M. Noack, P. Kölsch, D. Creaser, J. Caro, and J. Sterte, “ZSM-5 membranes synthesized without organic templates using a seeding technique”, J. Membr. Sci. , 159, 263 (1999). 

  73. 10.1021/ja031653t W. Yuan, Y. S. Lin, and W. Yang, “Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers”, J. Am. Chem. Soc. , 126, 4776 (2004). 

  74. F. Banihashemi, L. Meng, A. A. Babaluo, and Y. S. Lin, “Xylene vapor permeation in MFI zeolite membranes made by templated and template-free secondary growth of randomly oriented seeds: Effects of xylene activity and microstructure”, Ind. Eng. Chem. Res. , 57, 16059 (2018). 

  75. 10.1002/ange.201814248 F. Banihashemi, A. F. M. Ibrahim, A. A. Babaluo, and J. Y. S. Lin, “Template-free synthesis of highly b-oriented MFI-type zeolite thin films by seeded secondary growth”, Angew. Chem. Int. Ed. , 131, 2541 (2019). 

  76. 10.1126/science.aaf1343 D.-Y. Koh, B. A. McCool, H. W. Deckman, and R. P. Lively, “Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes”, Science , 353, 804 (2016). 

  77. 10.1002/anie.201807935 X. Wu, W. Wei, J. Jiang, J. Caro, and A. Huang, “High-flux high-selectivity metal-organic framework MIL-160 membrane for xylene isomer separation by pervaporation”, Angew. Chem. Int. Ed. , 57, 15354 (2018). 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로