$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

발광형 태양광 집광기 최신 연구 동향
Recent Progress and Prospect of Luminescent Solar Concentrator 원문보기

한국태양에너지학회 논문집 = Journal of the Korean Solar Energy Society, v.39 no.4, 2019년, pp.25 - 39  

송형준 (서울과학기술대학교 안전공학과)

Abstract AI-Helper 아이콘AI-Helper

Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to re...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 또한 수명 측면에서도 이미 검증된 발광체(Luminophore)들과 결정질 실리콘 태양전지를 사용하기에 장시간 운영에도 큰 문제 없이 사용할 수 있다. 본 논문에서는 발광형 태양광 집광기의 현재까지의 연구 동향과 상업화를 방안에 대해 논의하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
건물일체형 태양광 발전 시스템이란 무엇인가? 태양광 발전 시스템은 현재 대규모 발전 단지를 기반으로 설치 용량이 급증하고 있으며, 도심에서는 건물의 에너지 효율 상승 및 송배전 거리 최소화를 위한 건물 일체형 태양광 발전 시스템(Building integrated photovoltaic)에 대한 수요가 급증하고 있다. 건물일체형 태양광 발전 시스템은 건물과 어울리는 색상을 가진 태양광 모듈을 건물의 벽면이나 옥상에 배치하여 태양광을 전기로 변환시키는 방법이다. 태양광 모듈은 빛을 흡수해서 전기로 변환시키기에 색상이 불투명한 단점이 있어, 투명한 유리창 부분을 대체할 수 있는 태양광 시스템에 대한 필요성이 대두되고 있다.
발광형 태양광 집광기의 전망은 어떠한가? 그 중 한 방법이 발광형 태양광 집광기(Luminescent solar concentrator)이다. 발광형 태양광 집광기는 용액 공정으로 일반 유리창에 제작이 가능하고, 태양광 시장의 90% 이상을 차지하는 실리콘 태양전지와 결합이 용이하기에 향후 건물의 창문을 이용한 태양광 발전에 널리 사용될 것으로 예상된다. 또한 수명 측면에서도 이미 검증된 발광체(Luminophore)들과 결정질 실리콘 태양전지를 사용하기에 장시간 운영 에도 큰 문제 없이 사용할 수 있다.
반투명 태양전지의 단점은 무엇인가? 태양전지에 들어가는 광 흡수층을 얇게 형성하고, 투명한 전극들을 이용하면 반투명 태양광 시스템 구현이 가능하다 2,3) . 하지만 이 방식의 경우 주로 사용되는 박막 태양광 모듈의 수명 문제로 건물에서 요구하는 유리창 규격에 맞지 않는 단점들이 지적되고 있다. 또한 가격이 비싸서 시장 확대에 한계가 지적되고 있다. 이를 극복하기 위해 공정이 단순하고, 가격 경쟁력 확보가 가능한 창문형 태양광 발전 시스템에 대한 방법들이 제시되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (43)

  1. Fu, Fan, Feurer, Thomas, Weiss, Thomas Paul, Pisoni, Stefano, Avancini, Enrico, Andres, Christian, Buecheler, Stephan, Tiwari, Ayodhya N.. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nature energy, vol.2, no.1, 16190-.

  2. Lunt, Richard R., Bulovic, Vladimir. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Applied physics letters, vol.98, no.11, 113305-.

  3. Bergren, Matthew R., Makarov, Nikolay S., Ramasamy, Karthik, Jackson, Aaron, Guglielmetti, Rob, McDaniel, Hunter. High-Performance CuInS2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows. ACS energy letters, vol.3, no.3, 520-525.

  4. Corrado, Carley, Leow, Shin Woei, Osborn, Melissa, Carbone, Ian, Hellier, Kaitlin, Short, Markus, Alers, Glenn, Carter, Sue A.. Power generation study of luminescent solar concentrator greenhouse. Journal of renewable and sustainable energy, vol.8, no.4, 043502-.

  5. Yablonovitch, Eli. Thermodynamics of the fluorescent planar concentrator. Journal of the Optical Society of America, vol.70, no.11, 1362-.

  6. Klimov, Victor I., Baker, Thomas A., Lim, Jaehoon, Velizhanin, Kirill A., McDaniel, Hunter. Quality Factor of Luminescent Solar Concentrators and Practical Concentration Limits Attainable with Semiconductor Quantum Dots. ACS photonics, vol.3, no.6, 1138-1148.

  7. Coropceanu, Igor, Bawendi, Moungi G.. Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.14, no.7, 4097-4101.

  8. Jeong, Byeong Guk, Park, Young-Shin, Chang, Jun Hyuk, Cho, Ikjun, Kim, Jai Kyeong, Kim, Heesuk, Char, Kookheon, Cho, Jinhan, Klimov, Victor I., Park, Philip, Lee, Doh C., Bae, Wan Ki. Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking. ACS nano, vol.10, no.10, 9297-9305.

  9. Li, Hongbo, Wu, Kaifeng, Lim, Jaehoon, Song, Hyung-Jun, Klimov, Victor I.. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nature energy, vol.1, 16157-.

  10. Meinardi, Francesco, Colombo, Annalisa, Velizhanin, Kirill A., Simonutti, Roberto, Lorenzon, Monica, Beverina, Luca, Viswanatha, Ranjani, Klimov, Victor I., Brovelli, Sergio. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nature photonics, vol.8, no.5, 392-399.

  11. Zhao, Haiguang, Benetti, Daniele, Jin, Lei, Zhou, Yufeng, Rosei, Federico, Vomiero, Alberto. Absorption Enhancement in “Giant” Core/Alloyed‐Shell Quantum Dots for Luminescent Solar Concentrator. Small, vol.12, no.38, 5354-5365.

  12. Meinardi, Francesco, McDaniel, Hunter, Carulli, Francesco, Colombo, Annalisa, Velizhanin, Kirill A., Makarov, Nikolay S., Simonutti, Roberto, Klimov, Victor I., Brovelli, Sergio. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nature nanotechnology, vol.10, no.10, 878-885.

  13. Wu, Kaifeng, Li, Hongbo, Klimov, Victor I.. Tandem luminescent solar concentrators based on engineered quantum dots. Nature photonics, vol.12, no.2, 105-110.

  14. Zhao, H., Zhou, Y., Benetti, D., Ma, D., Rosei, F.. Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano energy, vol.37, 214-223.

  15. Meinardi, Francesco, Ehrenberg, Samantha, Dhamo, Lorena, Carulli, Francesco, Mauri, Michele, Bruni, Francesco, Simonutti, Roberto, Kortshagen, Uwe, Brovelli, Sergio. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nature photonics, vol.11, no.3, 177-185.

  16. Zhou, Yufeng, Benetti, Daniele, Tong, Xin, Jin, Lei, Wang, Zhiming M., Ma, Dongling, Zhao, Haiguang, Rosei, Federico. Colloidal carbon dots based highly stable luminescent solar concentrators. Nano energy, vol.44, 378-387.

  17. Wu, Jinzhu, Dai, Jun, Shao, Yanbin, Sun, Yanchun. One-step synthesis of fluorescent silicon quantum dots (Si-QDs) and their application for cell imaging. RSC advances, vol.5, no.102, 83581-83587.

  18. Zhang, Bolong, Gao, Can, Soleimaninejad, Hamid, White, Jonathan M., Smith, Trevor A., Jones, David J., Ghiggino, Kenneth P., Wong, Wallace W. H.. Highly Efficient Luminescent Solar Concentrators by Selective Alignment of Donor-Emitter Fluorophores. Chemistry of materials : a publication of the American Chemical Society, vol.31, no.8, 3001-3008.

  19. Slooff, L. H., Bende, E. E., Burgers, A. R., Budel, T., Pravettoni, M., Kenny, R. P., Dunlop, E. D., Büchtemann, A.. A luminescent solar concentrator with 7.1% power conversion efficiency. Physica status solidi. PSS-RRL. Rapid Research Letters, vol.2, no.6, 257-259.

  20. Chou, Chun-Hsien, Hsu, Min-Hung, Chen, Fung-Chung. Flexible luminescent waveguiding photovoltaics exhibiting strong scattering effects from the dye aggregation. Nano energy, vol.15, 729-736.

  21. Zhao, Yimu, Meek, Garrett A., Levine, Benjamin G., Lunt, Richard R.. Near‐Infrared Harvesting Transparent Luminescent Solar Concentrators. Advanced optical materials, vol.2, no.7, 606-611.

  22. Levitt, J. A., Weber, W. H.. Materials for luminescent greenhouse solar collectors. Applied optics, vol.16, no.10, 2684-.

  23. Benjamin, Willie E., Veit, Darren R., Perkins, Matt J., Bain, Edward, Scharnhorst, Kelsey, McDowall, Stephen, Patrick, David L., Gilbertson, John D.. Sterically Engineered Perylene Dyes for High Efficiency Oriented Fluorophore Luminescent Solar Concentrators. Chemistry of materials : a publication of the American Chemical Society, vol.26, no.3, 1291-1293.

  24. Batchelder, J. S., Zewail, A. H., Cole, T.. Luminescent solar concentrators 2: Experimental and theoretical analysis of their possible efficiencies. Applied optics, vol.20, no.21, 3733-.

  25. Seybold, G., Wagenblast, G.. New perylene and violanthrone dyestuffs for fluorescent collectors. Dyes and pigments : an international journal, vol.11, no.4, 303-317.

  26. Dienel, T., Bauer, C., Dolamic, I., Bruhwiler, D.. Spectral-based analysis of thin film luminescent solar concentrators. Solar energy, vol.84, no.8, 1366-1369.

  27. Correia, S.F.H., Lima, P.P., Andre, P.S., Ferreira, M.R.S., Carlos, L.A.D.. High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.138, 51-57.

  28. Polishuk, P.. Plastic optical fibers branch out. IEEE communications magazine, vol.44, no.9, 140-148.

  29. Reisfeld, R.. New developments in luminescence for solar energy utilization. Optical Materials, vol.32, no.9, 850-856.

  30. 10.1117/12.662503 

  31. Schrecengost, Jonathon R., Bowser, Seth D., Weible, Seth W., Solomon, Joel M., Minner, Lauren J., Gresh, Jesse T., Wittmershaus, Bruce P.. Increasing the area of a white scattering background can increase the power output of a luminescent solar concentrator. Solar energy, vol.170, 132-137.

  32. Song, Hyung-Jun, Jeong, Byeong Guk, Lim, Jaehoon, Lee, Doh C., Bae, Wan Ki, Klimov, Victor I.. Performance Limits of Luminescent Solar Concentrators Tested with Seed/Quantum-Well Quantum Dots in a Selective-Reflector-Based Optical Cavity. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.18, no.1, 395-404.

  33. Xu, Lu, Yao, Yuan, Bronstein, Noah D., Li, Lanfang, Alivisatos, A. Paul, Nuzzo, Ralph G.. Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors. ACS photonics, vol.3, no.2, 278-285.

  34. Bronstein, Noah D., Yao, Yuan, Xu, Lu, O’Brien, Erin, Powers, Alexander S., Ferry, Vivian E., Alivisatos, A. Paul, Nuzzo, Ralph G.. Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration. ACS photonics, vol.2, no.11, 1576-1583.

  35. Debije, Michael G., Van, My-Phung, Verbunt, Paul P. C., Kastelijn, Maud J., van der Blom, Rudy H. L., Broer, Dirk J., Bastiaansen, Cees W. M.. Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. Applied optics, vol.49, no.4, 745-.

  36. Verbunt, Paul P. C., Tsoi, Shufen, Debije, Michael G., Boer, Dirk. J., Bastiaansen, Cees W.M., Lin, Chi-Wen, de Boer, Dick K. G.. Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors. Optics express, vol.20, no.5, A655-.

  37. Needell, David R., Ilic, Ognjen, Bukowsky, Colton R., Nett, Zach, Xu, Lu, He, Junwen, Bauser, Haley, Lee, Benjamin G., Geisz, John F., Nuzzo, Ralph G., Alivisatos, A. Paul, Atwater, Harry A.. Design Criteria for Micro-Optical Tandem Luminescent Solar Concentrators. IEEE journal of photovoltaics, vol.8, no.6, 1560-1567.

  38. Kosten, Emily D., Kayes, Brendan M., Atwater, Harry A.. Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells. Energy & environmental science, vol.7, no.6, 1907-1912.

  39. Lunardi, Marina M., Needell, David R., Bauser, Haley, Phelan, Megan, Atwater, Harry A., Corkish, Richard. Life Cycle Assessment of tandem LSC-Si devices. Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, vol.181, 1-10.

  40. Currie, Michael J., Mapel, Jonathan K., Heidel, Timothy D., Goffri, Shalom, Baldo, Marc A.. High-Efficiency Organic Solar Concentrators for Photovoltaics. Science, vol.321, no.5886, 226-228.

  41. Kanellis, Michalis, de Jong, Minne M., Slooff, Lenneke, Debije, Michael G.. The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier. Renewable energy, vol.103, 647-652.

  42. Lamnatou, Chr., Chemisana, D.. Solar radiation manipulations and their role in greenhouse claddings: Fluorescent solar concentrators, photoselective and other materials. Renewable & sustainable energy reviews, vol.27, 175-190.

  43. Vossen, F.M., Aarts, M.P.J., Debije, M.G.. Visual performance of red luminescent solar concentrating windows in an office environment. Energy and buildings, vol.113, 123-132.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로