$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Biosynthetic Pathway of Indole-3-Acetic Acid in Basidiomycetous Yeast Rhodosporidiobolus fluvialis 원문보기

Mycobiology, v.47 no.3, 2019년, pp.292 - 300  

Bunsangiam, Sakaoduoen (Department of Microbiology, Faculty of Science, Kasetsart University) ,  Sakpuntoon, Varunya (Department of Microbiology, Faculty of Science, Kasetsart University) ,  Srisuk, Nantana (Department of Microbiology, Faculty of Science, Kasetsart University) ,  Ohashi, Takao (International Center for Biotechnology, Osaka University) ,  Fujiyama, Kazuhito (International Center for Biotechnology, Osaka University) ,  Limtong, Savitree (Department of Microbiology, Faculty of Science, Kasetsart University)

Abstract AI-Helper 아이콘AI-Helper

IAA biosynthetic pathways in a basidiomycetous yeast, Rhodosporidiobolus fluvialis DMKU-CP293, were investigated. The yeast strain showed tryptophan (Trp)-dependent IAA biosynthesis when grown in tryptophan supplemented mineral salt medium. Gas chromatography-mass spectrometry was used to further id...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • fluvialis on IAA biosynthesis has not yet been reported. Therefore, the aim of this study was to focus on the clarification of the IAA biosynthetic pathways in R. fluvialis.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. Libbert E, Risch H. Interactions between plants and epiphytic bacteria regarding their auxin metabolism: v. isolation and identification of the IAA-producing and destroying bacteria from pea plants. Physiol Plant. 1969;22:51-58. 

  2. Ruanpanun P, Tangchitsomkid N, Hyde KD, et al. Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol. 2010;26:1569-1578. 

  3. Limtong S, Koowadjanakul N. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol. 2012;28:3323-3335. 

  4. Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J Exp Bot. 2012;63:2853-2872. 

  5. Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31:425-448. 

  6. Duca D, Lorv J, Patten CL, et al. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek. 2014;106:85-125. 

  7. Zakharova EA, Shcherbakov AA, Brudnik VV, et al. Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. Insights from quantum chemistry. Eur J Biochem. 1999;259:572-576. 

  8. Xin G, Glawe D, Doty SL. Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol Res. 2009;113:973-980. 

  9. Limtong S, Kaewwichian R, Yongmanitchai W, et al. Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol. 2014;30:1785-1796. 

  10. Nutaratat P, Srisuk N, Arunrattiyakorn P, et al. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 2014;118:683-694. 

  11. Fu S-F, Sun P-F, Lu H-Y, et al. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol. 2016;120:433-448. 

  12. El-Tarabily KA. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol. 2004;96:69-75. 

  13. Nutaratat P, Srisuk N, Arunrattiyakorn P, et al. Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum. Arch Microbiol. 2016;198:429-437. 

  14. Rao RP, Hunter A, Kashpur O, et al. Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi. Genetics. 2010;185:211. 

  15. Sun P-F, Fang W-T, Shin L-Y, et al. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. Plos One. 2014;9:e114196. 

  16. Surussawadee J, Khunnamwong P, Srisuk N, et al. Papiliotrema siamense f.a., sp. nov., a yeast species isolated from plant leaves. Int J Syst Evol Microbiol. 2014;64:3058-3062. 

  17. Nutaratat P, Amsri W, Srisuk N, et al. Indole-3-acetic acid production by newly isolated red yeast Rhodosporidium paludigenum. J Gen Appl Microbiol. 2015;61:1-9. 

  18. Mujahid M, Sasikala C, Ramana CV. Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2. Appl Microbiol Biotechnol. 2011;89:1001-1008. 

  19. Kulkarni GB, Sanjeevkumar S, Kirankumar B, et al. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of wilt in chickpea. Appl Biochem Biotechnol. 2013;169:1292-1305. 

  20. Ricardo C-L, Campos-Reales N, Elmerich C, et al. Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Mol Gen Genet. 2000;264:521-530. 

  21. Tanaka E, Tanaka C, Ishihara A, et al. Indole-3-acetic acid biosynthesis in Aciculosporium take, a causal agent of witches' broom of bamboo. J Gen Plant Pathol. 2003;69:1-6. 

  22. Reineke G, Heinze B, Schirawski J, et al. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol. 2008;9:339-355. 

  23. Hilbert M, Voll LM, Ding Y, et al. Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol. 2012;196:520-534. 

  24. Krause K, Henke C, Asiimwe T, et al. Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on Tricholoma vaccinum-spruce ectomycorrhiza. Appl Environ Microbiol. 2015;81:7003-7011. 

  25. Mashiguchi K, Tanaka K, Sakai T, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA. 2011;108:18512-18517. 

  26. Zhao Y. Auxin biosynthesis. Arabidopsis book. 2014;12:e0173. 

  27. Brandi M, Clark EM, Lindow SE. Characterization of the indole-3-acetic acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro. Can J Microbiol. 1996;42:586-592. 

  28. Spaepen S, Vanderleyden J. Auxin and plantmicrobe interactions. Cold Spring Harb Perspect Biol. 2011;3:a001438. 

  29. Stes E, Prinsen E, Holsters M, et al. Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection. Plant J. 2012;70:513-527. 

  30. Koga J, Adachi T, Hidaka H. IAA Biosynthetic pathway from tryptophan via indole-3-pyruvic acid in Enterobacter cloacae. Agric Biol Chem. 1991;55:701-706. 

  31. Brown HM, Purves WK. Indole acetaldehyde reductase of Cucumis sativus L: kinetic properties and role in auxin biosynthesis. Plant Physiol. 1980;65:107-113. 

  32. Koshiba T, Saito E, Ono N, et al. Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol. 1996;110:781-789. 

  33. Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant. 2012;5:334-338. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로