$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

팔당호 난분해성 유기물에 대한 조류기원 유기물의 기여
Algal Contribution to the Occurrence of Refractory Organic Matter in Lake Paldang, South Korea: Inferred from Dual Stable Isotope (13C and 15N) Tracer Experiment 원문보기

생태와 환경 = Korean journal of ecology and environment, v.52 no.3, 2019년, pp.192 - 201  

이연정 (한국해양과학기술원 해양생태연구센터) ,  하선용 (극지연구소 극지해양과학 연구부) ,  허진 (세종대학교 환경에너지공간융합학과) ,  신경훈 (한양대학교 해양융합과학과)

초록
AI-Helper 아이콘AI-Helper

효과적인 물환경관리계획을 수립하기 위해서는 다양한 기원의 유기물이 난분해성 유기물 농도 증가에 영향을 줄 수 있는지 여부를 파악하는 것이 중요하다. 특히 상당량의 광합성 산물은 식물플랑크톤에 의해 매일 생성되고 있지만, 이들이 수계 내 난분해성 유기물에 기여하는지에 대한 정보는 부족하다. 본 연구에서는 $^{13}C$$^{15}N$ 추적자 첨가실험을 통해 조류기원 유기물이 생분해(60일, 암배양) 및 산화제(과망간산칼륨) 처리 후 분해되지 않고 잔존하는지 여부를 확인하였다. 생분해 실험 결과 광합성을 통해 생성된 총 유기탄소($TO^{13}C$), 입자성 유기탄소($PO^{13}C$), 입자성 질소($P^{15}N$)는 각각 26%, 20%, 17%가 비 생분해성 유기물로 잔존하였다. 또한 상당량의 $PO^{13}C$가 과망간산칼륨에 의해 산화되지 않고 잔존하였다(초기: 12%, 60일 암배양 후: 38%). 이는 미생물에 의해 사용된 후 남아있는 조류기원 유기물이 난분해성 유기물에 기여할 수 있음을 의미한다. 또한 미생물에 의해 변형된 조류기원 유기물의 양은 COD 산화율 및 유기물 지표 간 격차에 영향을 줄 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

While a fairly large amount of organic matter is produced daily via phytoplankton photosynthesis in Lake Paldang, South Korea, knowledge of the role of algal-derived organic matter (OM) as a refractory OM source is not adequate. To understand the contribution of algal-derived OM to the refractory po...

주제어

참고문헌 (47)

  1. Baines, S.B. and M.L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnology and Oceanography 36(6): 1078-1090. 

  2. Blair, G.J., R.D. Lefroy and L. Lisle. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 46: 1459-1466. 

  3. Blair, N., R.D. Faulkner, A.R. Till and P.R. Poulton. 2006. Long-term management impacts on soil C, N and physical fertility. Part I: Broadbalk experiment. Soil & Tillage Research 91: 30-38. 

  4. Byun, J.H., S.J. Hwang, B.H. Kim, J.R. Park, J.K. Lee and B.J. Lim. 2015. Relationship between a dense population of cyanobacteria and odorous compounds in the North Han River system in 2014 and 2015. Korean Journal of Ecology and Environment 48(4): 263-271. 

  5. Chen, W. and P.J. Wangersky. 1996. Rates of microbial degradation of dissolved organic carbon from phytoplankton cultures. Journal of Plankton Research 18(9): 1521-1533. 

  6. Cox, L., R. Celis, M.C. Hermosin, J. Cornejo, A. Zsolnay and K. Zeller. 2000. Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter. Environmental Science & Technology 34: 4600-4605. 

  7. Dawes, C.J. 1966. A light and electron microscopic survey of algal cell walls. II. Chlorophyceae. The Ohio Journal of Science 66: 317-326. 

  8. De Figueiredo, D.R., U.M. Azeiteiro, S.M. Esteves, F.J.M. Goncalves and M.J. Pereira. 2004. Microcystin-producing blooms - a serious global public health issue. Ecotoxicology and Environmental Safety 59: 151-163. 

  9. Dodge, J.D. 1973. The fine structure of algal cells. Academic Press, New York. 

  10. Dodge, J.D. and R.M. Crawford. 1970. A survey of thecal fine structure in Dinophyceae. Botanical Journal of the Linnean Society 63: 53-67. 

  11. Dong, W., J. Wan, T.K. Tokunaga, B. Gilbert and K.H. Williams. 2017. Transport and humification of dissolved organic matter within a semi-arid floodplain. Journal of Environmental Sciences 57: 24-32. 

  12. Driscoll, C.T., K.M. Driscoll, H. Fakhraei and K. Civerolo. 2016. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmospheric Environment 146: 5-14. 

  13. Evans, C.D., D.T. Monteith and D.M. Cooper. 2005. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution 137: 55-71. 

  14. Hama, T., T. Miyazaki, Y. Ogawa, T. Iwakuma, M. Takahashi, A. Otsuki and S. Ichimura. 1983. Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Marine Biology 73: 31-36. 

  15. Hama, T., K. Yanagi and J. Hama. 2004. Decrease in molecular weight of photosynthetic products of marine phytoplankton during early diagenesis. Limnology and Oceanography 49(2): 471-481. 

  16. Hanamachi, Y., T. Hama and T. Yanai. 2008. Decomposition process of organic matter derived from freshwater phytoplankton. Limnology 9(1): 57-69. 

  17. Hong, H.C., M.H. Wong, A. Mazudmer and Y. Liang. 2008. Trophic state, natural organic matter and disinfection by-product formation potential of drinking water reservoirs around Pearl River Delta Region (China). Journal of Hydrology 359, 164-173. 

  18. Hunt, J.F. and T. Ohno. 2007. Characterization of fresh and decomposed dissolved organic matter using excitation-emission matrix fluorescence spectroscopy and multiway analysis. Journal of Agricultural and Food Chemistry 55: 2121-2128. 

  19. Hur, J. and J.K. Shin, S.W. Park. 2006. Characterizing fluorescence properties of dissolved organic matter for water quality management of rivers and lakes. Journal of Korean Society of Environmental Engineers 28(9): 940-948. 

  20. Kalbitz, K., S. Solinger, J.H. Park, B. Michalzik and E. Matzner. 2000. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science 165(4): 277-304. 

  21. Karim, A.G.A. and F.E. Round. 1967. Microfibrils in the lorica of the fresh-water alga Dinobryon. New Phytologist 66: 409-412. 

  22. Kim, H.S., J.J. Hong, J.U. Seong, K.S. Choi and J.C. Park. 2013. Comparison of organic matter distribution in major tributaries of the Nakdong River. Journal of Korean Society on Water Environment 29(5): 618-624. 

  23. Kolmakov, V.I. and N.A. Gaevskii, E.A. Ivanova, O.P. Dubovskaya, I.V. Gribovskaya and E.S. Kravchuk. 2002. Comparative analysis of ecophysiological characteristics of Stephanodiscus hantzschii Grun. in the periods of its bloom in recreational water bodies. Russian Journal of Ecology 33(2): 97-103. 

  24. Kragh, T. and M. Sondergaard. 2009. Production and decomposition of new DOC by marine plankton communities: carbohydrates, refractory components and nutrient limitation. Biogeochemistry 96(1): 177-187. 

  25. Lee, Y., M.S. Kim, E.J. Won and K.H. Shin. 2006. An application of $^{13}C$ tracer for the determination of size fractionated primary productivity in upper stream of Lake Shihwa. Korean Journal of Limnology 39(1): 93-99. 

  26. Lee, Y., B. Lee, J. Hur, J.O. Min, S.Y. Ha, K. Ra, K.T. Kim and K.H. Shin. 2016. Biodegradability of algal-derived organic matter in a large artificial lake by using stable isotope tracers. Environmental Science and Pollution Research 23: 8358-8366. 

  27. Lee, Y.G. 2013. Add to living environmental standard and health protection standard, including standards for total organic carbon and 1,4-dioxane. Journal of Environmental Hi-technology 21(1): 38-41. 

  28. Lonborg, C., K. Davidson, X.A. Alvarez-Salgado and A.E.J. Miller. 2009. Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle. Marine Chemistry 113(3): 219-226 

  29. Lui, Y.S., J.W. Qiu, Y.L. Zhang, M.H. Wong and Y. Liang. 2011. Algal-derived organic matter as precursors of disinfection by-products and mutagens upon chlorination. Water Research 45, 1454-1462. 

  30. Manninen, N., H. Soinne, R. Lemola, L. Hoikkala and E. Turtola. 2018. Effects of agricultural land use on dissolved organic carbon and nitrogen in surface runoff and subsurface drainage. Science of the Total Environment 618: 1519-1528. 

  31. Min, J.O., S.Y. Ha, M.H. Chung, B.H. Choi, Y. Lee, S.H. Youn, W.D. Yoon, J.S. Lee and K.H. Shin. 2012. Seasonal variation of primary productivity and pigment of phytoplankton community structure in the Seomjin Estuary. Korean Journal of Limnology 45(2): 139-149. 

  32. Ministry of Environment. 2004. Official testing method with respect to water pollution process. 

  33. Ministry of Environment. 2011. Increasing trend of refractory organic matters and the management plans for the Han River basin. 

  34. Ministry of Environment. 2013. ECOREA-Environmental Review 2013. 

  35. Ngome, A.F., M. Becker, K.M. Mtei and F. Mussgnug. 2011. Fertility management for maize cultivation in some soils of Western Kenya. Soil & Tillage Research 117: 69-75. 

  36. Luan, M., G. Jing, Y. Piao, D. Liu and L. Jin. 2017. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arabian Journal of Chemistry 10: S769-S776. 

  37. Ogawa, H., Y. Amagai, I. Koike, K. Kaiser and R. Benner. 2001. Production of refractory dissolved organic matter by bacteria. Science 292(5518): 917-920. 

  38. Ohnishi, Y., M. Fujii, S. Murashige, A. Yuzawa, H. Miyasaka and Y. Suzuki. 2004. Microbial decomposition of organic matter derived from phytoplankton cellular components in seawater. Microbes and Environments 19(2): 128-136. 

  39. Ohno, T. 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organicmatter. Environmental Science & Technology 36(4): 742-746. 

  40. Parker, B.C. 1964. The structure and chemical composition of cell walls of three Chlorophycean algae. Phycologia 4: 63-74. 

  41. Pett, R.J. 1989. Kinetics of microbial mineralization of organic carbon from detrital Skeletonema costatum cells. Marine Ecology Progress Series 52(2): 123-128. 

  42. Sawicka, K., E.C. Rowe, C.D. Evans, D.T. Monteith, E.I. Vanguelova, A.J. Wade and J.M. Clark. 2017. Modelling impacts of atmospheric deposition and temperature on long-term DOC trends. Science of the Total Environment 578: 323-336. 

  43. Servais, P., A. Anzil and C. Ventresque. 1989. Simple method for determination of biodegradable dissolved organic carbon in water. Applied and Environmental Microbiology 55: 2732-2734. 

  44. Shen, Z., J. Niu, X. Wang, H. Wang and X. Zhao. 2013. Distribution and transformation of nutrients in Large-Scale Lakes and reservoirs: the three gorges reservoir. Springer Science & Business Media. http://www.springer.com/us/book/9783642349638. 

  45. Singh, S., S. Dutta and S. Inamdar. 2014. Land application of poultry manure and its influence on spectrofluorometric characteristics of dissolved organic matter. Agriculture, Ecosystems and Environment 193: 25-36. 

  46. Tirol-Padre, A. and J.K. Ladha. 2004. Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Science Society of America Journal 68: 969-978. 

  47. Vollertsen, J. and T. Hvitved-Jacobsen. 2002. Biodegradability of wastewater - a method for COD- fractionation. Water Science & Technology 45(3): 25-34. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로