$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique

Advances in nano research, v.7 no.5, 2019년, pp.311 - 324  

Ghannadpour, S.A.M. (New Technologies and Engineering Department, Shahid Beheshti University) ,  Moradi, F. (New Technologies and Engineering Department, Shahid Beheshti University)

Abstract AI-Helper 아이콘AI-Helper

The present study aims to evaluate the nonlinear and post-buckling behaviors of orthotropic graphene sheets exposed to end-shortening strain by implementing a semi-Galerkin technique, as a new approach. The nano-sheets are regarded to be on elastic foundations and different out-of-plane boundary con...

주제어

참고문헌 (54)

  1. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039 

  2. Anjomshoa, A., Shahidi, A.R., Hassani, B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Model, 38, 5934-5955. https://doi.org/10.1016/j.apm.2014.03.036 

  3. Ansari, R. and Gholami, R. (2016), "Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory", Int. J. Appl. Mech., 8, 1650053. https://doi.org/10.1142/S1758825116500538 

  4. Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092 

  5. Ball, P. (2001), "Roll up for the revolution", Nature, 414, 142-144. https://doi.org/10.1038/35102721 

  6. Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., Int. J., 5(2), 113-126. https://doi.org/10.12989/anr.2017.5.2.113 

  7. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Advances Nano Res., Int. J., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279 

  8. Brischetto, S., Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2015), "Refined 2D and exact 3D shell models for the free vibration analysis of single-and double-walled carbon nanotubes", Technologies, 3(4), 259-284. https://doi.org/10.3390/technologies3040259 

  9. Chakraverty, S. and Behera, L. (2014), "Free vibration of rectangular nanoplates using Rayleigh-Ritz method", Phys. E Low-Dimens. Syst. Nanostruct., 56, 357-363. https://doi.org/10.1016/j.physe.2013.08.014 

  10. Duan, W.H., Wang, Q., Wang, Q. and Liew, K.M. (2010), "Modeling the instability of carbon nanotubes: from continuum mechanics to molecular dynamics", J. Nanotechnol. Eng. Med., 1, 11001. https://doi.org/10.1115/1.3212820 

  11. Ebrahimi, F. and Barati, M.R. (2016), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249. https://doi.org/10.12989/anr.2016.4.3.229 

  12. Ebrahimi, F. and Barati, M.R. (2018), 'Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. https://doi.org/10.12989/anr.2018.6.2.093 

  13. Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111. https://doi.org/10.12989/anr.2016.4.2.085 

  14. Eringen, A.C. and Suhubi, E.S. (1964), "Nonlinear theory of simple micro-elastic solids-I", Int. J. Eng. Sci., 2, 189-203. https://doi.org/10.1016/0020-7225(64)90004-7 

  15. Eringen, A. and Wegner, J. (2003), Nonlocal Continuum Field Theories, Applied Mechanics Reviews, Springer, New York, NY, USA. 

  16. Falvo, M.R., Clary, G., Helser, A., Paulson, S., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S. and Superfine, R. (1998), "Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes", Microsc. Microanal, 4, 504-512. https://doi.org/10.1017/S1431927698980485 

  17. Farajpour, A., Solghar, A.A. and Shahidi, A. (2013), "Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression", Phys. E Low-Dimens. Syst. Nanostruct., 47, 197-206. https://doi.org/10.1016/j.physe.2012.10.028 

  18. Ghannadpour, S.A.M. (2018), "Ritz method application to bending, buckling and vibration analyses of Timoshenko beams via nonlocal elasticity", J. Appl. Comput. Mech., 4, 16-26. https://doi.org/10.22055/JACM.2017.21915.1120 

  19. Ghannadpour, S.A.M. and Mohammadi, B. (2010), "Buckling Analysis of Micro- and Nano-Rods/Tubes Based on Nonlocal Timoshenko Beam Theory Using Chebyshev Polynomials", Adv. Mater. Res., 123, 619-622. https://doi.org/10.4028/www.scientific.net/AMR.123-125.619 

  20. Ghannadpour, S.A.M. and Mohammadi, B. (2011), "Vibration of nonlocal Euler beams using Chebyshev polynomials", Key Eng. Mater., 471, 1016-1021. https://doi.org/10.4028/www.scientific.net/KEM.471-472.1016 

  21. Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024 

  22. Golmakani, M.E. and Sadraee Far, M.N. (2016), "Nonlinear thermo-elastic bending behavior of graphene sheets embedded in an elastic medium based on nonlocal elasticity theory", Comput. Math. Appl., 72, 785-805. https://doi.org/10.1016/j.camwa.2016.06.022 

  23. Jensen, K., Kim, K. and Zettl, A. (2008), "An atomic-resolution nanomechanical mass sensor", Nat. Nanotechnol., 3(9), 533. https://doi.org/10.1038/nnano.2008.200 

  24. Jomehzadeh, E. and Saidi, A.R. (2011a), "Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates", Compos. Struct., 93, 1015-1020. https://doi.org/10.1016/j.compstruct.2010.06.017 

  25. Jomehzadeh, E. and Saidi, A.R. (2011b), "A study on large amplitude vibration of multilayered graphene sheets", Comput. Mater. Sci., 50, 1043-1051. https://doi.org/10.1016/j.commatsci.2010.10.045 

  26. Jomehzadeh, E., Saidi, A.R. and Pugno, N.M. (2012), "Large amplitude vibration of a bilayer graphene embedded in a nonlinear polymer matrix", Phys. E Low-Dimensional Syst. Nanostruct., 44, 1973-1982. https://doi.org/10.1016/j.physe.2012.05.015 

  27. Lee, G. Do, Wang, C.Z., Yoon, E., Hwang, N.M. and Ho, K.M. (2006), "Vacancy defects and the formation of local haeckelite structures in graphene from tight-binding molecular dynamics", Phys. Rev. B - Condens. Matter Mater. Phys., 74(24), 245411. https://doi.org/10.1103/PhysRevB.74.245411 

  28. Li, C. and Chou, T.W. (2003a), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8 

  29. Li, C. and Chou, T.W. (2003b), "Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators", Phys. Rev. B - Condens. Matter Mater. Phys., 68(7), 073405. https://doi.org/10.1103/PhysRevB.68.073405 

  30. Li, C. and Chou, T.W. (2006), "Elastic wave velocities in single-walled carbon nanotubes", Phys. Rev. B - Condens. Matter Mater. Phys., 73(24), 245407. https://doi.org/10.1103/PhysRevB.73.245407 

  31. Li, Y.S. and Pan, E. (2015), "Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory", Int. J. Eng. Sci., 97, 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009 

  32. Liew, K.M., Wong, C.H., He, X.Q., Tan, M.J. and Meguid, S.A. (2004), "Nanomechanics of single and multiwalled carbon nanotubes", Phys. Rev. B - Condens. Matter Mater. Phys., 69(11), 115429. https://doi.org/10.1103/PhysRevB.69.115429 

  33. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324 

  34. Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004 

  35. Novoselov, K.S. (2011), "Nobel Lecture: Graphene: Materials in the Flatland", Rev. Mod. Phys., 83, 837-849. https://doi.org/10.1103/RevModPhys.83.837 

  36. Ovesy, H.R. and Ghannadpour, S.A.M. (2011), "An exact finite strip for the initial postbuckling analysis of channel section struts", Comput. Struct., 89, 1785-1796. https://doi.org/10.1016/j.compstruc.2010.10.009 

  37. Phiri, J., Johansson, L.S., Gane, P. and Maloney, T. (2018), "A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites", Compos. Part B Eng., 147, 104-113. https://doi.org/10.1016/j.compositesb.2018.04.018 

  38. Pradhan, S.C. and Murmu, T. (2009), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47, 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001 

  39. Radic, N. and Jeremic, D. (2016), "Thermal buckling of double-layered graphene sheets embedded in an elastic medium with various boundary conditions using a nonlocal new first-order shear deformation theory", Compos. Part B Eng., 97, 201-215. https://doi.org/10.1016/j.compositesb.2016.04.075 

  40. Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B - Condens. Matter Mater. Phys., 69(23), 235406. https://doi.org/10.1103/PhysRevB.69.235406 

  41. Shen, L., Shen, H.-S. and Zhang, C.-L. (2010), "Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments", Comput. Mater. Sci., 48, 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006 

  42. Soleimani, A., Naei, M.H. and Mosavi Mashadi, M. (2017), "Nonlocal postbuckling analysis of graphene sheets with initial imperfection based on first order shear deformation theory", Results Phys., 7, 1299-1307. https://doi.org/10.1016/j.rinp.2017.03.003 

  43. Stradi, D., Martinez, U., Blom, A., Brandbyge, M. and Stokbro, K. (2016), "General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function", Phys. Rev. B, 93, 155302. https://doi.org/10.1103/PhysRevB.93.155302 

  44. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., Int. J., 54, 755-769. https://doi.org/10.12989/sem.2015.54.4.755 

  45. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2016), "Beam buckling analysis by nonlocal integral elasticity finite element method", Int. J. Struct. Stab. Dyn., 16, 1550015. https://doi.org/10.1142/S0219455415500157 

  46. Tavakolian, F., Farrokhabadi, A. and Mirzaei, M. (2017), "Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory", Microsyst. Technol., 23, 839-848. https://doi.org/10.1007/s00542-015-2785-z 

  47. Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013). "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001 

  48. Wang, Q. and Varadan, V.K. (2006), "Wave characteristics of carbon nanotubes", Int. J. Solids Struct., 43, 254-265. https://doi.org/10.1016/j.ijsolstr.2005.02.047 

  49. Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294, 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005 

  50. Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401 

  51. Xu, Y.M., Shen, H.S. and Zhang, C.L. (2013), "Nonlocal plate model for nonlinear bending of bilayer graphene sheets subjected to transverse loads in thermal environments", Compos. Struct., 98, 294-302. https://doi.org/10.1016/j.compstruct.2012.10.041 

  52. Young, R.J., Kinloch, I.A., Gong, L. and Novoselov, K.S. (2012), "The mechanics of graphene nanocomposites: A review", Compos. Sci. Technol., 72, 1459-1476. https://doi.org/10.1016/j.compscitech.2012.05.005 

  53. Zhang, L.W., Zhang, Y. and Liew, K.M. (2017), "Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory", Appl. Math. Model., 49, 691-704. https://doi.org/10.1016/j.apm.2017.02.053 

  54. Zibaei, I., Rahnama, H., Taheri-Behrooz, F. and Shokrieh, M.M. (2014), "First strain gradient elasticity solution for nanotube-reinforced matrix problem", Compos. Struct., 112, 273-282. https://doi.org/10.1016/j.compstruct.2014.02.023 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로