$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

음향신호 기반 터널 돌발상황 검지시스템
Acoustic Signal-Based Tunnel Incident Detection System 원문보기

韓國ITS學會 論文誌 = The journal of the Korea Institute of Intelligent Transportation Systems, v.18 no.5, 2019년, pp.112 - 125  

장진환 (한국건설기술연구원 도로연구소)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 음향신호 처리기반 터널 돌발상황 탐지시스템을 개발하고 평가하였다. 개발 시스템은 알고리즘, 음향신호 수집기, 서버시스템 세 가지 구성 요소로 구성된다. 비음수 텐서 분해와 은닉 마코프 모델을 이용하여 돌발상황음(충돌, 스키드)을 검출한다. 개발시스템 성능은 제한된 환경과 실제 운영환경에서 평가되었다. 그 결과, 제한된 환경 평가에서 거리별로 80~95%의 검지성능을 보였고, 실제 운영환경에서는 94% 검지성능을 보였다. 기존의 터널 돌발상황 검지기술인 영상 및 루프검지기 기반 시스템 성능과 비교한 결과, 본 개발 기술의 장점은 신속한 검지시간(2초 이내)인 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

An acoustic signal-based, tunnel-incident detection system was developed and evaluated. The system was comprised of three components: algorithm, acoustic signal collector, and server system. The algorithm, which was based on nonnegative tensor factorization and a hidden Markov model, processes the a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • (2017), uses the channel gains produced by the NTF method, to detect acoustic signals generated by incident events. An HMM-based likelihood ratio test is then conducted to verify the detected events. The NTF method, which was proposed initially by Shashua and Hazan, has been applied widely to discriminate the event sounds from a range of acoustic sources (FitzGerald et al.
  • The performance of the developed system was evaluated in two phases: controlled and uncontrolled roadway tunnel environment. For an evaluation in a controlled environment, an unused roadway tunnel and recorded incident sounds were prepared. For the uncontrolled test, six-month long real world incident data from in a tunnel were used.
  • The developed system is comprised broadly of three elements: acoustic signal processing algorithm, acoustic signal collector, and center server system. An acoustic signal-processing algorithm using nonnegative tensor factorization(NTF) and hidden Markov model (HMM) was developed.
  • 8]. The fiber-optic cable was used for the real-time data transmission, and a LTE-based wireless communication dongle was used for the backup of the incident event data(sound and video image) identified by the algorithm for further analysis.
  • The performance of the developed system was evaluated in two phases: controlled and uncontrolled roadway tunnel environment. For an evaluation in a controlled environment, an unused roadway tunnel and recorded incident sounds were prepared.
  • For the uncontrolled test, six-month long real world incident data from in a tunnel were used. Three widely used evaluation indices for incident-detection systems, detection rate (DR), false-alarm rate (FAR), and mean time to detection (MTTD), as expressed in Equations 6 to 8, were used to evaluate the performance.
  • On the other hand, conventional practices have shown some limitations from the perspective of immediacy, such as traffic detector databased and video image-based algorithms. To resolve the shortcoming, a tunnel-incident detection algorithm using the acoustic signals from crashes and skids was suggested and evaluated thoroughly in real-world situations using abundant data obtained over an eight-month period.

대상 데이터

  • For an evaluation in a controlled environment, an unused roadway tunnel and recorded incident sounds were prepared. For the uncontrolled test, six-month long real world incident data from in a tunnel were used. Three widely used evaluation indices for incident-detection systems, detection rate (DR), false-alarm rate (FAR), and mean time to detection (MTTD), as expressed in Equations 6 to 8, were used to evaluate the performance.
  • 6]. The acoustic sources for the performance test consisted of real-world 200 crash and 37 skid sounds that were obtained from broadly recognized organizations, including the Euro New Car Assessment Program and the Insurance Institute for Highway Safety of the United States. The sounds were played using a speaker at similar sound pressure levels (SPLs) to those of real sounds.
  • When initially installed at the site, all parameters of the algorithm were set at the same values, as in the controlled environment. To optimize the algorithm parameters, two-month long acoustic data, including 10 skids and1 crash, were obtained. The collected acoustic signals were classified into two groups: incident and non-incident sounds.

이론/모형

  • The algorithm identifies incident-prone sounds, among other sounds, produced by moving vehicles. The algorithm, which was initially developed by Jeon et al. (2017), uses the channel gains produced by the NTF method, to detect acoustic signals generated by incident events. An HMM-based likelihood ratio test is then conducted to verify the detected events.
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. Abdulhai B. and Ritchie S.(1999), "Enhancing the Universality and Transferability of Freeway Incident Detection Using a Bayesian-Based Neural Network," Trans. Res. Part C, vol. 7, no. 5, pp.261-280. 

  2. Balke K. N.(1993), An Evaluation of Existing Incident Detection Algorithms, Texas Trans. Ins., The Texas A&M Univ. Sys. 

  3. Browne R., Foo S., Huynh S., Abdulhai B. and Hall F.(2005), "Comparison and Analysis Tool for Automatic Incident Detection," Trans. Res. Rec., No. 1925. 

  4. Castro-Neto M. M., Han L. D., Jeong Y. S. and Jeong M. K.(2012), "Toward Training-Free Automatic Detection of Freeway Incidents: Simple Algorithm with One Parameter," Trans. Res. Rec., No. 2278. 

  5. Clavel C., Ehrette T. and Richard, G.(2005), "Events detection for an audio-based surveillance system," Proc. ICME. 

  6. European Commission(2001), European Self-Training Workshop, Safety in Tunnels: Experience Feedback and Regulation Prospection. 

  7. Fahrtash M.(2012), "Automated Video Incident Detection Systems," Caltrans Div. of Res. and Innov. 

  8. FitzGerald D., Cranitch M. and Coyle E.(2005), "Non-Negative Tensor Factorization for Sound Source Separation," ISSC 2005, Dublin. 

  9. Foggia P., Saggese A., Strissciuglio N. and Vento M.(2015), "Car crashes detection by audio analysis in crowded roads," Proc. 12th IEEE Int. Con. on Advanced Video and Signal Based Surveillance. 

  10. Gemmeke J., Vuegen P. and Vanrumste B.(2013), "An Exemplar-Based NMF Approach to Audio Event Detection," Proc. of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New York, USA. 

  11. Ghahramani Z.(2001), "An Introduction to Hidden Markov Models and Bayesian Networks," Inter. Jour. of Pattern Recognition and Artificial Intelligence, vol. 15, no. 1, pp.9-41. 

  12. Hancocks S. and Evans S.(2011), A55 North Wales Tunnels Area Video Automatic Incident Detection, EasyWay, Document number: 5083687/493/03/35695. 

  13. Harlow C. and Wang, Y.(2002), "Acoustic Accident Detection System," Jour. of Intelli. Trans. Sys. vol. 7, no. 1, pp.43-56. 

  14. Jeon K. and Kim H.(2017), "Dual-Channel Acoustic Event Detection in Multisource Environments Using Nonnegative Tensor Factorization and Hidden Markov Model," Jour. of Inst. of Electro. and Infor. Eng., vol. 54, no. 1, pp.121-128. 

  15. Kim, H. and Lee, C.(2004), "A Study on the Relationship among Traffic Accidents, Fire Occurrences and Tunnel Characteristics in Local Road Tunnels," Proc. of 2004 Korea Tunnel Eng. Conf., South Korea (in Korean). 

  16. Lee H., Kim Y., Kwon T., Park K., Bok K. and Han M.(2004), "An Implementation of Traffic Accident Detection System at Intersection Based on Image and Sound," Jour. of Control, Auto. and Sys. Eng., vol. 10, no. 6, pp.501-509. 

  17. Neale W., Terpstra T. and Bortles W.(2008), "Evaluation of Discrete Vehicle Accident Sounds for use in Accident Reconstruction," Proc. Mtgs. Acoust., vol. 5, no. 1. 

  18. Ozbay K. and Kachroo P.(1999), Incident Management in Intelligent Transportation Systems, Artech House, ISBN 0-89006-774-0, Boston, London. 

  19. Prevedouros P., Ji X., Papandreou K., Kopelias P. and Vegiri, V.(2006), "Video Incident Detection Tests in Freeway Tunnels," Trans. Res. Rec., No. 1959. 

  20. Rabaoui A., Davy M., Rossignol S. and Ellouze, N.(2008), "Using one-class SVMs and wavelets for audio surveillance," IEEE Trans. Inf. Forensics Security, vol. 3, no. 4, pp.763-775. 

  21. Vacher M., Istrate D., Besacier L., Serignat J. F. and Castelli, E.(2004), "Sound Detection and Classification for Medical Telesurvey," 2nd Conf. on Bio. Eng., Austria. 

  22. Valenzise G., Gerosa L., Tagliasacchi M., Antonacci F. and Sarti, A.(2007), "Scream and Gunshot Detection and Localization for Audio-Surveillance Systems," Proc. of IEEE Conference on Advanced Video and Signal Based Surveillance, London, UK. 

  23. William B. M. and Guin A.(2007), "Traffic Management Center use of Incident Detection Algorithms: Findings of a Nationwide Survey," IEEE Trans. on Intel. Trans. Sys., vol. 8, no. 2, pp.351-358. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로