$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Terra MODIS NDVI 및 LST 자료와 RNN-LSTM을 활용한 토양수분 산정
RNN-LSTM Based Soil Moisture Estimation Using Terra MODIS NDVI and LST 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.61 no.6, 2019년, pp.123 - 132  

장원진 (Department of Civil, Environmental, and Plant Engineering, Konkuk University) ,  이용관 (Department of Civil, Environmental, and Plant Engineering, Konkuk University) ,  이지완 (Department of Civil, Environmental, and Plant Engineering, Konkuk University) ,  김성준 (School of Civil, Environmental, and Plant Engineering, Konkuk University)

Abstract AI-Helper 아이콘AI-Helper

This study is to estimate the spatial soil moisture using Terra MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data and machine learning technique. Using the 3 years (2015~2017) data of MODIS 16 days composite NDVI (Normalized Difference Vegetation Index) and daily Land Surface Temp...

Keyword

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 기존 선행연구에서 사용한 0.30∼0.76 (R2). 0.46%∼12.21% (RMSE)의 결과를 보인 MLR을 개선하기 위하여 시계열자료 분석에 특화된 순환신경망 (Recurrent Neural Network, RNN)에서 장기 의존성 문제가 보완된 Long Short Term Memory model (LSTM)을 MODIS NDVI, LST 자료와 기상자료에 적용해 토양수분을 산정하고자 한다.
  • 본 연구에서는 Python 라이브러리 Tensorflow를 기반으로한 RNN-LSTM을 이용해 토양수분산정을 알고리즘을 개발하였다. 입력자료는 2015년∼2017년의 지상 관측자료 (강수량, 지표온도, 일조시간)를 공간분포해 사용하였으며, 지상관측 자료와 동일한 기간의 MODIS 위성의 NDVI, LST를 1 day, 1 km 해상도로 구축하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
토양수분 측정 방법에는 무엇이 있는가? 토양수분 측정은 주로 지상관측과 원격탐사로 이뤄지는데, 지상관측으로는 중량법, 중성자법, Time Domain Reflectometer (TDR)법이 있으며 원격탐사에서는 마이크로파 기반의 센서를 이용하거나 가시/근적외선 위성 영상으로부터 토양수분과의 상관관계를 이용해 산정하는 방법이 있다 (Su et al., 2014).
기계학습의 대표적인 학습알고리즘에는 무엇이 있는가? 하드웨어의 발전에 따라 모든 분야에서의 데이터 활용 가능성을 높여주고 있다. 대표적인 학습알고리즘 으로는 ANN, DNN (Deep Neural Network), RNN, CNN (Convolutional Neural Network), RBM (Restricted Boltzmann Machine) 등이 있다.
토양수분의 특징은 무엇인가? 토양수분은 토양 입자 간의 공극에 존재하는 물로  양에 따라 토양의 물리적 화학적 속성에 영향을 주는 요소로 지구상 존재하는 물에서 작은 비율을 차지하지만 물순환, 에너지 분포와 지표에서 발생하는 자연현상에 있어 중요한 요소로 작용하며 홍수나 가뭄에도 영향을 끼친다 (Dai et al., 2004).
질의응답 정보가 도움이 되었나요?

참고문헌 (27)

  1. Aubert, D., C. Loumagne, and L. Oudin, 2003. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. Journal of Hydrology 280(1-4): 145-161. doi:10.1016/S0022-1694(03)00229-4. 

  2. Barling, R. D., I. D. Moore, and R. B. Grayson, 1994. A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resources Research 30(4): 1029-1044. doi:10.1029/93WR03346. 

  3. Dai, A., K. E. Trenberth, and T. Qian, 2004. A global dataset of Palmer Drought Severity Index for 1870-2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology 5(6): 1117-1130. doi:10.1175/JHM-386.1. 

  4. Farrar, T. J., S. E. Nicholson, and A. R. Lare, 1994. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil moisture. Remote Sensing of Environment 50(2): 121-133. doi:10.1016/0034-4257(94)90039-6. 

  5. Gers, F. A., N. N. Schraudolph, and J. Schmidhuber, 2002. Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research 3(Aug): 115-143. 

  6. Gillies, R. R., W. P. Kustas, and K. S. Humes, 1997. A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface. International Journal of Remote Sensing 18(15): 3145-3166. doi:10.1080/014311697217026. 

  7. Huete, A. R., C. Justice, and W. J. D. van Leeuwen, 1999. MODIS Vegetation Index (MOD13) Algorithm Theoretical Basis Document Version 3. 

  8. Hutchinson, J. S., T. J. Vought, and S. L. Hutchinson, 2006. Continuous soil moisture mapping using MODIS NDVI and LST products. Papers and Proceedings of Applied Geography Conferences 29: 140. 

  9. Joo, J. Y., M. H. Choi, S. W. Jung, and S. O. Lee, 2010. Prediction of soil moisture using hydrometeorological data in selmacheon. Journal of the Korean Society of Civil Engineers 30(5B): 437-444 (in Korean). 

  10. Jung, C. G., Y. G. Lee, Y. H. Cho, and S. J. Kim, 2017. A study of spatial soil moisture estimation using a multiple linear regression model and MODIS Land surface temperature data corrected by conditional merging. Remote Sensing 9(8): 870. doi:10.3390/rs9080870. 

  11. Kim, B. S., and B. K. Jung, 2016. Flood simulation using the gauge-adjusted radar rainfall and physics-based distributed hydrologic model. Hydrological Processes 22(22): 4400-4414. doi:10.1002/hyp.7043. 

  12. Kim, D. S., N. W. Park, N. Kim, K. J. Kim, S. J. Lee, Y. H. Kim, J. W. Kim, D. Y. Shin, Y. H. Cho, and Y. W. Lee, 2017a. Downscaling advanced microwave scanning radiometer 2 (AMSR2) soil moisture data using regression-kriging. Journal of the Korean Cartographic Association 17(2): 99-110 (in Korean). doi:10.4172/2169-0049.1000139. 

  13. Kim, G. S., and J. P. Kim, 2011. Correlation analysis between soil moisture retrieved from satellite images and ground network measurements. Journal of the Korean Association of Geographic Information Studies 14(2): 69-81 (in Korean). doi:10.11108/kagis.2011.14.2.069. 

  14. Kim, J. Y., and T. S. Hogue, 2011. Improving spatial soil moisture representation through integration of AMSR-E and MODIS products. IEEE Transactions on Geoscience and Remote Sensing 50(2): 446-460. doi:10.1109/TGRS.2011.2161318. 

  15. Kim, Y. H., G. J. Kim, S. J. LEE, J. W. Kim, and Y. W. Lee, 2017b. Deep learning-based retrieval of daily 500-m soil moisture for south korea. Journal of The Korean Cartographic Association 17(3): 109-121 (in Korean). doi:10.16879/jkca.2017.17.3.109. 

  16. Lee, Y. G., C. G. Jung, Y. H. Jo, and S. J. Kim, 2017. Estimation of soil moisture using multiple linear regression model and COMS land surface temperature data. Journal of the Korean Society of Agricultural Engineers 59(1): 11-20(in Korean). doi:10.5389/KSAE.2017.59.1.011. 

  17. Narasimhan, B., R. Srinivasan, J. G. Arnold, and M. Di Luzio, 2005. Estimation of long-term soil moisture using a distributed parameter hydrologic model and verification using remotely sensed data. Transactions of the ASAE 48(3): 1101-1113. doi:10.13031/2013.18520. 

  18. Park, J. A., and G. S. Kim, 2011. Estimation of spatial distribution of soil moisture at Yongdam Dam watershed using artificial neural networks. Journal of the Korean Geographical Society 46(3): 319-330 (in Korean). 

  19. Park S. Y., 2003. Evaluation of MODIS land surface temperature as an indicator of the climatic water budget in the central great plains. The Geographical Journal of Korea 37(3): 257-271 (in Korean). 

  20. Qiu, Y., B. Fu, J. Wang, and L. Chen, 2003. Spatiotemporal prediction of soil moisture content using multiple-linear regression in a small catchment of the Loess Plateau, China. CATENA 54(1-2): 173-195. doi:10.1016/S0341-8162(03)00064-X. 

  21. Shin, D. H., K. H. Choi, and C. B. Kim, 2017. Deep learning model for prediction rate improvement of stock price using RNN and LSTM. Journal of Korean Institute of Information Technology 15(10): 9-16 (in Korean). doi:10.14801/jkiit.2017.15.10.9. 

  22. Su, S. L., D. N. Singh, and M. S. Baghini, 2014. A critical review of soil moisture measurement. Measurement 54: 92-105. doi:10.1016/j.measurement.2014.04.007. 

  23. Wang, L., J. Wen, T. Zhang, Y. Zhao, H. Tian, X. Wang, R. Liu, J. Zhang, and S. Lu, 2009. Surface soil moisture estimates from AMSR-E observations over an arid area. Hydrology and Earth System Sciences Discussions 6(1): 1055-1087. 

  24. Wang, Z. M., 1999. MODIS land-surface temperature algorithm theoretical basis document (LST ATBD). Institute for Computational Earth System Science, Santa Barbara, 75. 

  25. Wan, Z., and J. Dozier, 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing 34(4): 892-905. doi:10.1109/36.508406. 

  26. Wan, Z., P. Wang, and X. Li, 2004. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains. International Journal of Remote Sensing 25(1): 61-72. doi:10.1080/0143116031000115328. 

  27. Zribi, M., N. Baghdadi, N. Holah, and O. Fafin, 2005. New nethodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion. Remote Sensing of Environment 96(3-4): 485-496. doi:10.1016/j.rse.2005.04.005. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로