$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한계 없는 무선통신 실현을 위한 기술 동향
Research Trends on Limitless Connections in Wireless Transmission and Access Technologies 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.34 no.1, 2019년, pp.61 - 74  

김근영 (미래이동통신연구본부) ,  김광선 (미래이동통신연구본부) ,  명정호 (미래이동통신연구본부) ,  윤찬호 (미래이동통신연구본부) ,  신우람 (미래이동통신연구본부) ,  김철순 (미래이동통신연구본부) ,  고영조 (미래이동통신연구본부) ,  문성현 (미래이동통신연구본부) ,  김경표 (미래이동통신연구본부) ,  김태중 (미래이동통신연구본부)

Abstract AI-Helper 아이콘AI-Helper

The capacity of wireless communications has been considered to be restricted by their fundamental limits, which were first formulated by Shannon in 1948. These limits are for the communication environment that is composed of a transmitter and receiver pair. However, there are usually more than one s...

표/그림 (3)

참고문헌 (48)

  1. C.E. Shannon, "A Mathematical Theory of Communication," Bell Syst. Techn. J., vol. 27, no. 3, July 1948, pp. 379-423. 

  2. T.M. Cover and J. Wiley, Elements of Information Theory, 2nd Edition, Wiley Online Library, 2006. 

  3. C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes. 1," Proc. ICC-IEEE Int. Conf. Commun., Geneva, Switzerland, 1993, pp. 1064-1070. 

  4. S.Y. Chung et al., "On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit," IEEE Commun. Lett., vol. 5, no. 2, 2001, pp. 58-60. 

  5. E. Arikan, "Channel Polarization: A Method for Constructing Capacity Achieving Codes for Symmetric Binary-Input Memoryless Channels," IEEE Trans. Inform. Theory, vol. 55, no. 7, July 2009, pp. 3051-3073. 

  6. E. Telatar. "Capacity of Multi-Antenna Gaussian Channels," Trans. Telecommun. Technol., vol. 10, no. 6, 1999, pp. 585-595. 

  7. L. Zheng and D.N.C. Tse, "Diversity and Multiplexing: a Fundamental Tradeoff in Multiple-Antenna Channels," IEEE Trans. Inform. Theory, vol. 49, no. 5, May 2003, pp. 1073-1096. 

  8. A. El Gamal and Y.-H. Kim, Network Information Theory, Cambridge University Press: New York, USA, 2012. 

  9. H. Weingarten, Y. Steinberg, and S. S. Shamai, "The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel," IEEE Trans. Inform. Theory, vol. 52, no. 9, 2006, pp. 3936-3964. 

  10. R.H. Etkin, D.N.C. Tse, and H. Wang, "Gaussian Interference Channel Capacity to Within One Bit," IEEE Trans. Inform. Theory, vol. 54, no. 12, Dec. 2008, pp. 5534-5562. 

  11. V.R. Cadambe and S.A. Jafar, "Interference Alignment and Degrees of Freedom of the K-User Interference Channel," IEEE Trans. Inform. Theory, vol. 54, no. 8, Aug. 2008, pp. 3425-3441. 

  12. M. Tonouchi, "Cutting-Edge Terahertz Technology", Nature Photon., vol. 1, no. 97, 2007, pp. 97-105. 

  13. P.U. Jepsen, D.G. Cooke, and M. Koch, "Terahertz Spectroscopy and Imaging-Modern Techniques and Applications," Laser Photon.,Rev., vol. 5, no. 1, 2011, pp. 124-166. 

  14. IEEE 802.15 TG3d 14/0304r16, "Applications Requirements Document," May 2015. 

  15. 3GPP TR 38.900, "Study on Channel Model for Frequency Spectrum above 6 GHz, V14.3.1," 2017. 

  16. IEEE Std 802.15.3d, "Amendment 2: 100 Gb/s Wireless Switched Point-to-Point Physical Layer," 2017 

  17. TERAPOD, available at https://terapod-project.eu/. 

  18. TRRANOVA, available at https://ict-terranova.eu/. 

  19. R. Piesiewicz et al., "Towards Short-Range Terahertz Communication Systems: Basic Considerations," Int. Conf. Appl. Electromagn. Commun., Dubrovnik, Croatia, Oct. 12-14, pp. 1-5. 

  20. H. Hamada et al.," 300-GHz, 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer," IEEE/MTT-S Int. Microw. Symp., Philadelphia, PA, USA, June 2018, pp. 1480-1483. 

  21. P.Rodriguez-Vazquez et al., "A 65 Gbps QPSK One Meter Wireless Link Operating at a 225-255GHz Tunable Carrier in a SiGe HBT Technology," IEEE Radio Wireless Symp., Anaheim, CA, USA, Jan. 2018, pp. 146-149 

  22. L. Breslau et al., "Web Caching and Zipf-Like Distributions: Evidence and Implications," Proc. IEEE INFOCOM, New York, USA, Mar. 1999, pp. 126-134. 

  23. C. Yang et al., "Analysis on Cache-Enabled Wireless Heterogeneous Networks," IEEE Trans. Wireless Commun., vol. 15, no. 1, Jan. 2016, pp. 131-145. 

  24. N. Golrezaei et al., "FemtoCaching: Wireless Video Content Delivery through Distributed Caching Helpers," Proc. IEEE INFOCOM, Orlando, FL, USA, 2012, pp. 1107-1115. 

  25. N. Golrezaei et al., "Base-Station Assisted Device-to-Device Communications for High-Throughput Wireless Video Networks," IEEE Trans. Wireless Commun., vol. 13, no. 7, July 2014, pp. 3665-3676. 

  26. M.A. Maddah-Ali and U. Niesen, "Fundamental Limits of Caching," IEEE Trans. Inform. Theory, vol. 60, no. 5, May 2014, pp. 2856-2867. 

  27. M. Ji, G. Caire and A.F. Molisch, "Fundamental Limits of Caching in Wireless D2D Networks," IEEE Trans. Inform. Theory, vol. 62, no. 2, Feb. 2016, pp. 849-869. 

  28. K. Zhu et al., "Social-Aware Incentivized Caching for D2D Communications," IEEE Access, vol. 4, Nov. 2016, pp. 7685-7593. 

  29. J. Li et al., "On Social-Aware Content Caching for D2D-Enabled Cellular Networks with Matching Theory," accepted to IEEE Internet Things J., 2018. 

  30. B. Bai et al., "Caching Based Socially-Aware D2D Communications in Wireless Content Delivery Networks: A Hypergraph Framework," IEEE Wireless Commun., vol. 23, no. 4, Aug. 2016, pp. 74-81. 

  31. Z. Chen et al., "Cooperative Caching and Transmission Design in Cluster-Centric Small Cell Networks," IEEE Trans.Wireless Commun., vol. 16, no. 5, May 2017, pp. 3401-3415. 

  32. Z. Ding et al., "NOMA Assisted Wireless Caching: Strategies and Performance Analysis," IEEE Trans. Commun., vol. 66, no. 10, Oct. 2018, pp. 4854-4876. 

  33. 3GPP TS 36.211 v15.3.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation," Jan. 2019. 

  34. 3GPP TS 38.211 v15.4.0, "NR; Physical channels and modulation, " Jan. 2019. 

  35. Z. Zhao et al., "Pulse shaped OFDM for Asynchronous Uplink Access," Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Nov. 2015, pp. 3-7. 

  36. B. Farhang-Boroujeny, "OFDM Versus Filter Bank Multicarrier," IEEE Sig. Proc. Mag., vol. 28, no. 3, May 2011, pp. 92-112. 

  37. Qualcomm Inc., "Waveform candidates," 3GPP TSG-RAN WG1 #84b, R1-162199, Apr. 2016. 

  38. J. Abdoli, M. Ja, and J. Ma, "Filtered OFDM: A New Waveform for Future Wireless Systems," Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun., Stockhlom, Sweden, June 2015, pp. 66-70. 

  39. V. Vakilian et al., "Universal-Filtered Multi-Carrier Technique for Wireless Systems Beyond LTE," IEEE Globecom Workshops, Atlanta, GA, USA, Dec. 2013, pp. 223-228. 

  40. W. Kozek and A.F. Molisch, "Nonorthogonal Pulseshapes for Multicarrier Communications in Doubly Dispersive Channels," IEEE J. Sel. Areas Commun., vol. 16, no. 8, 1998, pp. 1579-1589. 

  41. R. Hadani et al., "Orthogonal Time Frequency Space Modulation," Proc. IEEE WCNC, San Francisco, CA, USA, Mar. 2017, pp. 1-7. 

  42. R. El Hattachi, "A Deliverable by the NGMN Alliance," NGMN 5G Initiative White Paper, Feb. 17, 2015. 

  43. Hyperloop One, available at https://hyperloopone.com 

  44. R1-162930, "OTFS Modulation Waveform and Reference, Signals for New RAT," 3GPP, Apr. 2016. 

  45. Cohere Technologies, "Overview of OTFS Waveform for Next Generation RAT," 3GPP TSG RA WG1 Meeting #84, R1-162929, 2016. 

  46. 김근영, 명정호, 서지훈, "딥러닝을 활용한 무선 전송 및 접속 기술 동향," 전자통신동향분석, 제33권 제5호, 2018, pp. 13-23. 

  47. T.J. O'Shea and J. Hoydis, "An Introduction to Deep Learning for the Physical Layer," IEEE Trans. Cognitive Commun. Netw., vol. 3, no. 4, Dec. 2017, pp. 563-575. 

  48. E. Nachmani et al., "Deep Learning Methods for Improved Decoding of Linear Codes," IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, 2018, pp. 119-131. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로