$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] NASA LIS(Land Information System)을 이용한 한반도의 토양수분·증발산량 산출
Calculation of Soil Moisture and Evaporation on the Korean Peninsula using NASA LIS(Land Information System) 원문보기

한국지리정보학회지 = Journal of the Korean Association of Geographic Information Studies, v.23 no.4, 2020년, pp.83 - 100  

박광하 (K-water연구원 유역물관리연구소) ,  유완식 (K-water연구원 유역물관리연구소) ,  황의호 (K-water연구원 유역물관리연구소) ,  정관수 (충남대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 미국 NASA에서 개발한 LIS(Land Information System)를 이용하여 한반도 지역의 수문인자를 산출하여 토양수분증발산량에 대한 정확도를 평가하였다. LIS를 이용한 수문인자 산출을 위해 사용된 지표면 모형은 Noah-MP(Noah-MultiParameterization)이며, 수문기상 자료는 MERRA2(Modern-Era Retrospective analysis for Research and Applications, Version 2)를 적용하였다. Land Cover 및 국내 기상자료 적용에 따른 정확도를 확인하기 위해 IGBP(International Geosphere-Biosphere Programme), UMD(University of Maryland) Land Cover를 적용하였고, 기상관측자료는 기상청의 종관기상관측(ASOS, Automated Synoptic Observing System) 자료를 사용하였다. 산출된 자료의 정확도를 평가하기 위해 토양수분 및 증발산량을 대상으로 지상 관측자료와 비교하여 상관계수(CC, Correlation Coefficient), 편의(BIAS), 효율계수(NSE, Nash-Sutcliffe Efficiency)를 분석하였다. 그 결과, IGBP를 적용한 토양수분의 상관계수는 평균 0.56, 증발산량은 평균 0.71로 나타났고, UMD를 적용한 토양수분은 평균 0.68, 증발산량은 평균 0.72이며, UMD를 적용한 결과의 상관계수가 높게 평가되었다. 수문기상 자료로 MERRA2를 사용하였을 경우 토양수분의 상관계수는 평균 0.68, 증발산량은 평균 0.72로 나타났고, ASOS를 적용한 토양수분은 평균 0.66, 증발산량은 평균 0.72이며, ASOS를 적용한 결과 상관계수가 낮아지는 것으로 분석되었다. 국내 기상자료를 적용할 경우 상관계수가 낮아지는 현상이 발생하였는데, 지점 자료의 격자화를 진행할 때 MERRA2와 동일한 공간해상도인 0.65°× 0.5°로 격자화하여 지역에 따라 정확도의 차이가 발생 된 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

This study evaluated the accuracy of soil moisture and evapotranspiration by calculating the hydrological parameters in Korean peninsula using Land Information System(LIS) developed by US NASA. We used Noah-MP surface model to calculate hydrological parameters, and used MERRA2(Modern-Era Retrospecti...

Keyword

표/그림 (17)

참고문헌 (24)

  1. Arsenault, K.R., Kumar, S.V., Geiger, J.V., Wang, S., Kemp, E., Mocko, D.M. ... and Jacob, J. 2018. The Land surface Data Toolkit (LDT v7. 2)-a data fusion environment for land data assimilation systems. Geoscientific Model Development. 11(9):3605-3621. 

  2. Barlage M., Zeng, X. and Broxton, P. 2014. Improvement of Land Surface Parameters and States: Diagnosing Forecast and Model Deficiencies. JCSDA Science Meeting. 7pp. 

  3. Cai, X., Yang, Z. L., David, C.H., Niu, G.Y. and Rodell, M. 2014. Hydrological evaluation of the Noah­MP land surface model for the Mississippi River Basin. Journal of Geophysical Research: Atmospheres. 119(1): 23-38. 

  4. Chae, H.S., Kim, S.J. and Koh, D.K. 2004. Extraction of hydrological information of unmeasured watershed using remote sensing data. Magazine of Korea Water Resources Association. 37(3):44-49. 

  5. Cho, C.H. 2015. Changes in the water cycle due to climate change. Magazine of Korea Water Resources Association. 48(11):4-6. 

  6. Cho, E.S., Song, S.U. and Yoo, C.S. 2017. Analysis and Validation of Soil Moisture Data over the Korean Peninsula Simulated by the VIC Model. Journal of Wetlands Research. 19(1):52-62. 

  7. Hamlet, A.F., Mote, P.W., Clark, M.P. and Lettenmaier, D.P. 2007. Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the western United States. Journal of Climate. 20(8):1468-1486. 

  8. Jang, E.S. 2015. Estimation of surface fluxes using noah LSM and assessment of the applicability in korean peninsula. Paper of Masters Degree. Hanyang University. pp.1-31. 

  9. Kim, K.S., Kang, M.S., Jeong, H.N. and Kim, J. 2013. Comparison of crop growth and evapotranspiration simulations between Noah Multi Physics model and CERES-Rice model. Korean Journal of Agricultural and Forest Meteorology. 15(4):282-290. 

  10. Kumar, S.V., Peters-Lidard, C.D., Santanello, J., Harrison, K., Liu, Y. and Shaw, M. 2012. Land surface Verification Toolkit (LVT)-a generalized framework for land surface model evaluation. Geoscientific Model Development. 5(3):869-886. 

  11. Kumar, S.V., Peters-Lidard, C.D., Tian, Y., Houser, P.R., Geiger, J., Olden, S., ... and Adams, J. 2006. Land information system: An interoperable framework for high resolution land surface modeling. Environmental modelling & software. 21(10):1402-1415. 

  12. Lawston, P.M. 2017. Impacts of Irrigation on Land-atmosphere Interactions in High-resolution Model Simulations. Doctoral Dissertation. University of Delaware. pp.1-105. 

  13. Lee, J.H. 2017. Assimilation of satellite based soil moisture data into a land surface model. Paper of Masters Degree. Hongik University. pp.1-47. 

  14. Lee, T.H. 2018. Estimation and utilization of distributed soil moisture in time-spacial using remote sensing data and soil moisture data assimilation. Paper of Masters Degree. Kyungpook National University. pp.1-49. 

  15. McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S. and Verdin, J.P. 2017. A Land Data Assimilation System for sub-Saharan Africa Food and Water Security Applications. Scientific data. 4(1):1-19. 

  16. MOIS. 2018. Statistical yearbook of natural disaster. 

  17. Nijssen, B., Schnur, R. and Lettenmaier, D.P. 2001. Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model. 1980-93. Journal of Climate, 14(8):1790-1808. 

  18. Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R. ... and Dubash, N.K. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc. 151pp. 

  19. Peters-Lidard, C.D., Houser, P.R., Tian, Y., Kumar, S.V., Geiger, J., Olden, S. ... and Mitchell, K. 2007. High-performance Earth system modeling with NASA/GSFC's Land Information System. Innovations in Systems and Software Engineering. 3(3):157-165. 

  20. Rosero, E., Gulden, L.E. Yang, Z.L., De Goncalves, L.G., Niu, G.Y. and Kaheil, Y.H. 2011. Ensemble evaluation of hydrologically enhanced Noah-LSM: Partitioning of the water balance in high-resolution simulations over the Little Washita River experimental watershed. Journal of Hydrometeorology. 12(1):45-64. 

  21. Sheffield, J., Goteti, G. and Wood, E. F. 2006. Development of a 50-year High-resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. Journal of Climate. 19(13):3088-3111. 

  22. Son, K.H. 2010. Assessment of Global Hydrologic Model on East Asia Regio. Paper of Masters Degree. Sejong University. pp.1-71. 

  23. Wang, A., Lettenmaier, D.P. and Sheffield, J. 2011. Soil Moisture Drought in China, 1950-2006. Journal of Climate. 24(13): 3257-3271. 

  24. Xu, C.Y. and Singh, V.P. 2005. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. Journal of Hydrology. 308(1-4):105-121. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로