$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Anti-inflammatory effects of Lactobacillus reuteri LM1071 via MAP kinase pathway in IL-1β-induced HT-29 cells 원문보기

Journal of animal science and technology : JAST, v.62 no.6, 2020년, pp.864 - 874  

Kim, Tae-rahk (Center for Research and Development, LACTOMASON) ,  Choi, Kyoung-sook (Center for Research and Development, LACTOMASON) ,  Ji, Yosep (Advanced Green Energy and Environment, Handong Global University) ,  Holzapfel, Wilhelm H. (Advanced Green Energy and Environment, Handong Global University) ,  Jeon, Min-Gyu (Center for Research and Development, LACTOMASON)

Abstract AI-Helper 아이콘AI-Helper

Lactic acid bacteria are well-known probiotics, conferring several health benefits. In this study, we isolated lactobacilli from human breast milk and identified Lactobacillus reuteri LM1071 (RR-LM1071) using 16S rDNA sequencing. We tested the hemolytic activity, biogenic amine production, and antib...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • In this study, we evaluated the potential risk of RR-LM1071 isolated from breast milk by testing its hemolytic activity, biogenic amine production, and antibiotic resistance. To propose RRLM1071 as an effective probiotic for regulating intestinal inflammation, we tested its adhesive properties and anti-inflammatory effects on HT-29 cells.

데이터처리

  • Mean differences were evaluated by Student’s t-test or one-way ANOVA followed by tukey’s multiple comparison test
본문요약 정보가 도움이 되었나요?

참고문헌 (43)

  1. 1. Bene KP Kavanaugh DW Leclaire C Gunning AP MacKenzie DA Wittmann A et al Lactobacillus reuteri surface mucus adhesins upregulate inflammatory responses through interactions with innate C-type lectin receptors Front Microbiol 2017 8 321 10.3389/fmicb.2017.00321 28144237 

  2. 2. Dethlefsen L McFall-Ngai M Relman DA An ecological and evolutionary perspective on human-microbe mutualism and disease Nature 2007 449 811 8 10.1038/nature06245 17943117 

  3. 3. Qin J Li R Raes J Arumugam M Burgdorf KS Manichanh C et al A human gut microbial gene catalogue established by metagenomic sequencing Nature 2010 464 59 65 10.1038/nature08821 20203603 

  4. 4. Rajilić-Stojanović M de Vos WM The first 1000 cultured species of the human gastrointestinal microbiota FEMS Microbiol Rev. 2014 38 996 1047 10.1111/1574-6976.12075 24861948 

  5. 5. Moran NA Symbiosis Curr Biol 2006 16 R866 71 10.1016/j.cub.2006.09.019 17055966 

  6. 6. Walter J Britton RA Roos S Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm Proc Natl Acad Sci USA 2011 108 Suppl 1 4645 52 10.1073/pnas.1000099107 20615995 

  7. 7. Mu Q Tavella VJ Luo XM Role of Lactobacillus reuteri in human health and diseases Front Microbiol 2018 9 757 10.3389/fmicb.2018.00757 29387050 

  8. 8. Sotoudegan F Daniali M Hassani S Nikfar S Abdollahi M Reappraisal of probiotics’ safety in human Food Chem Toxicol. 2019 129 22 9 10.1016/j.fct.2019.04.032 31009735 

  9. 9. Le Blanc JG Chain F Martín R Bermúdez-Humarán LG Courau S Langella P Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria Microb Cell Factories 2017 16 79 10.1186/s12934-017-0691-z 28482838 

  10. 10. Ríos-Covián D Ruas-Madiedo P Margolles A Gueimonde M de Los Reyes-Gavilán CG Salazar N Intestinal short chain fatty acids and their link with diet and human health Front Microbiol 2016 7 185 10.3389/fmicb.2016.00185 26858696 

  11. 11. Mathur S Singh R Antibiotic resistance in food lactic acid bacteria: a review Int J Food Microbiol. 2005 105 281 95 10.1016/j.ijfoodmicro.2005.03.008 16289406 

  12. 12. Kang MS Yeu JE Hong SP Safety Evaluation of oral care probiotics Weissella cibaria CMU and CMS1 by phenotypic and genotypic analysis IntJ Mol Sci 2019 20 2693 10.3390/ijms20112693 31159278 

  13. 13. Nishiyama K Sugiyama M Mukai T Adhesion properties of lactic acid bacteria on intestinal mucin Microorganisms 2016 4 34 10.3390/microorganisms4030034 27681930 

  14. 14. Walter J Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research Appl Environ Microbiol. 2008 74 4985 96 10.1128/AEM.00753-08 18539818 

  15. 15. Lebeer S Vanderleyden J De Keersmaecker SC Genes and molecules of lactobacilli supporting probiotic action Microbiol Mol Biol Rev. 2008 72 728 64 10.1128/MMBR.00017-08 19052326 

  16. 16. Vastano V Pagano A Fusco A Merola G Sacco M Donnarumma G The Lactobacillus plantarum Eno A1 Enolase is involved in immunostimulation of Caco-2 cells and in biofilm development Adv Exp Med Biol. 2016 897 33 44 10.1007/5584_2015_5009 26577529 

  17. 17. Zyrek AA Cichon C Helms S Enders C Sonnenborn U Schmidt MA Molecular mechanisms underlying the probiotic effects of Escherichia coli nissle 1917 involve ZO-2 and PKC ζ redistribution resulting in tight junction and epithelial barrier repair Cell Microbiol. 2007 9 804 16 10.1111/j.1462-5822.2006.00836.x 17087734 

  18. 18. Schlee M Harder J Köten B Stange EF Wehkamp J Fellermann K Probiotic lactobacilli and VSL#3 induce enterocyte β-defensin 2 Clin Exp Immunol. 2008 151 528 35 10.1111/j.1365-2249.2007.03587.x 18190603 

  19. 19. Al-Sadi RM Ma TY IL-1β causes an increase in intestinal epithelial tight junction permeability J Immunol. 2007 178 4641 9 10.4049/jimmunol.178.7.4641 17372023 

  20. 20. Al-Sadi R Guo S Ye D Dokladny K Alhmoud T Ereifej L et al Mechanism of IL-1β modulation of intestinal epithelial barrier involves p38 kinase and activating transcription factor-2 activation J Immunol. 2013 190 6596 606 10.4049/jimmunol.1201876 23656735 

  21. 21. Steinbach EC Plevy SE The role of macrophages and dendritic cells in the initiation of inflammation in IBD Inflamm Bowel Dis. 2014 20 166 75 10.1097/MIB.0b013e3182a69dca 23974993 

  22. 22. Cominelli F Pizarro TT Interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease Aliment Pharmacol Ther 1996 10 Suppl 2 49 53 10.1046/j.1365-2036.1996.22164020.x 8899101 

  23. 23. Lee J Hwang KT Park KY Adhesion of lactic acid bacteria can modulate the secretion of cytokines on HT-29 colon adenocarcinoma cells J Korean Assoc Cancer Prev. 2004 9 36 41 

  24. 24. Gross V Andus T Daig R Aschenbrenner E Schӧlmerich J Falk W Regulation of interleukin-8 production in a human colon epithelial cell line (HT-29) Gastroenterology 1995 108 653 61 10.1016/0016-5085(95)90436-0 7875467 

  25. 25. Moon DO Jin CY Lee JD Choi YH Ahn SC Lee CM et al Curcumin decreases binding of Shiga-like toxin-1B on human intestinal epithelial cell line HT29 stimulated with TNF-α and IL-1β: suppression of p38, JNK and NF-κB p65 as potential targets Biol Pharm Bull. 2006 29 1470 5 10.1248/bpb.29.1470 16819191 

  26. 26. Kos B Šušković J Vuković S Šimpraga M Frece J Matošić S Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92 J Appl Microbiol. 2003 94 981 7 10.1046/j.1365-2672.2003.01915.x 12752805 

  27. 27. Silla Santos MH Biogenic amines: their importance in foods Int J Food Microbiol. 1996 29 213 31 10.1016/0168-1605(95)00032-1 8796424 

  28. 28. Ladero V Fernández M Calles-Enríquez M Sánchez-Llana E Cañedo E Martin MC et al Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol. 2012 30 132 8 10.1016/j.fm.2011.12.016 22265293 

  29. 29. Gezginc Y Akyol I Kuley E Özogul F Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt Food Chem. 2013 138 655 62 10.1016/j.foodchem.2012.10.138 23265537 

  30. 30. [FEEDAP] EFSA panel on additives and products or substances used in animal feed Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance EFSA J 2012 10 2740 10.2903/j.efsa.2012.2740 

  31. 31. Reunanen J von Ossowski I Hendrickx AP Palva A de Vos WM Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG Appl Environ Microbiol. 2012 78 2337 44 10.1128/AEM.07047-11 22247175 

  32. 32. Bang M Yong CC Ko HJ Choi IG Oh S Transcriptional response and enhanced intestinal adhesion ability of Lactobacillus rhamnosus GG after acid stress J Microbiol Biotechnol. 2018 28 1604 13 10.4014/jmb.1807.07033 30196592 

  33. 33. Kankainen M Paulin L Tynkkynen S von Ossowski I Reunanen J Partanen P et al Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein Proc Natl Acad Sci USA 2009 106 17193 8 10.1073/pnas.0908876106 19805152 

  34. 34. Polak-Berecka M Waśko A Paduch R Skrzypek T Sroka-Bartnicka A The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus Antonie van Leeuwenhoek. 2014 106 751 62 10.1007/s10482-014-0245-x 25090959 

  35. 35. Giaouris E Chapot-Chartier MP Briandet R Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties IntJ Food Microbiol. 2009 131 2 9 10.1016/j.ijfoodmicro.2008.09.006 18954916 

  36. 36. Del Re B Sgorbati B Miglioli M Palenzona D Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum Lett Appl Microbiol. 2000 31 438 42 10.1046/j.1365-2672.2000.00845.x 11123552 

  37. 37. Nishiyama K Nakamata K Ueno S Terao A Aryantini NP Sujaya IN et al Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins Biosci Biotechnol Biochem. 2015 79 271 9 10.1080/09168451.2014.972325 25351253 

  38. 38. de Vroome T Martinovic B Verkuyten M The integration paradox: level of education and immigrants’ attitudes towards natives and the host society Cultur Divers Ethnic Minor Psychol. 2014 20 166 75 10.1037/a0034946 24708387 

  39. 39. Sanchez-Muñoz F Dominguez-Lopez A Yamamoto-Furusho JK Role of cytokines in inflammatory bowel disease World J Gastroenterol. 2008 14 4280 8 10.3748/wjg.14.4280 18666314 

  40. 40. Friedrich M Pohin M Powrie F Cytokine networks in the pathophysiology of inflammatory bowel disease Immunity 2019 50 992 1006 10.1016/j.immuni.2019.03.017 30995511 

  41. 41. Mitsuyama K Toyonaga A Sasaki E Ishida O Ikeda H Tsuruta O et al Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6 Gut 1995 36 45 9 10.1136/gut.36.1.45 7890234 

  42. 42. Reinisch W Gasché C Tillinger W Wyatt J Lichtenberger C Willheim M et al Clinical relevance of serum interleukin-6 in Crohn’s disease: single point measurements, therapy monitoring, and prediction of clinical relapse AmJ Gastroenterol. 1999 94 2156 64 10.1016/S0002-9270(99)00344-5 10445543 

  43. 43. Van Kemseke C Belaiche J Louis E Frequently relapsing Crohn’s disease is characterized by persistent elevation in interleukin-6 and soluble interleukin-2 receptor serum levels during remission IntJ Colorectal Dis. 2000 15 206 10 10.1007/s003840000226 11008719 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로