$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Validation of KREAM Based on In-Situ Measurements of Aviation Radiation in Commercial Flights 원문보기

Journal of astronomy and space sciences, v.37 no.4, 2020년, pp.229 - 236  

Hwang, Junga (Korea Astronomy and Space Science Institute) ,  Kwak, Jaeyoung (Korea Astronomy and Space Science Institute) ,  Jo, Gyeongbok (Department of Astronomy and Space Science, Chungnam National University) ,  Nam, Uk-won (Korea Astronomy and Space Science Institute)

Abstract AI-Helper 아이콘AI-Helper

There has been increasing necessity of more precise prediction and measurements of aviation radiation in Korea. For our air crew and passengers' radiation safety, we develop our own radiation prediction model of KREAM. In this paper, we validate the KREAM model based on comparison with Liulin observ...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In this paper, we compare the in-situ measurements by using Liulin-6K equipment at the commercial flights with KREAM results to validate the reliability of our aviation radiation prediction model KREAM. We also compare the measurements with the other two models of CARI-6M and NAIRAS.
본문요약 정보가 도움이 되었나요?

참고문헌 (15)

  1. Ahn HB, Kim KW, Choi YC, A study on the reduction of cosmic radiation exposure by flight crew, J. Korean Soc. Aviat. Aeronaut. 28, 1-6 (2020). https://doi.org/10.12985/ksaa.2020.28.1.001 

  2. Dachev TP, Semkova JV, Tomov BT, Matviichuk YN, Dimitrov PG, et al., Overview of the Liulin type instruments for space radiation measurement and their scientific results, Life Sci. Space Res. 4, 92-114 (2015). https://doi.org/10.1016/j.lssr.2015.01.005 

  3. Green AR, Bennett LGI, Lewis BJ, Kitching F, McCall MJ, et al., An empirical approach to the measurement of the cosmic radiation field at jet aircraft altitudes, Adv. Space Res. 36, 1618-1626 (2005). https://doi.org/10.1016/j.asr.2005.03.061 

  4. Hwang J, Dokgo K, Choi E, Park JS, Kim KC, et al., Modeling of space radiation exposure estimation program for pilots, crew and passengers on commercial flights, J. Astron. Space Sci. 31, 25-31 (2014). https://doi.org/10.5140/JASS.2014.31.1.25 

  5. Hwang J, Lee J, Cho KS, Choi HS, Rho S, et al., Space radiation measurement on the polar route onboard the Korean commercial flights, J. Astron. Space Sci. 27, 43-54 (2010). https://doi.org/10.5140/JASS.2010.27.1.043 

  6. ICRU, Reference data for the validation of doses from cosmicradiation exposure of aircraft crew, International Commission on Radiation Units and Measurements, ICRU Rep. 84 (2010). 

  7. Irvine EA, Shine KP, Stringer MA, What are the implications of climate change for trans-Atlantic aircraft routing and flight time?, Transp. Res. D Transp. Environ. 47, 44-53 (2016). https://doi.org/10.1016/j.trd.2016.04.014 

  8. Kubancak J, Ambrozova I, Ploc O, Pachnerova Brabcova K, Stepan V, et al., Measurement of dose equivalent distribution onboard commercial jet aircraft, Radiat. Prot. Dosimetr. 162, 215-219 (2014). https://doi.org/10.1093/rpd/nct331 

  9. Malimban J, Nam UW, Pyo J, Youn S, Ye SJ, Characterization of a new tissue equivalent proportional counter for dosimetry of neutron and photon fields: comparison of measurements and Monte Carlo simulations, Phys. Med. Biol. 64, 17NT02 (2019). https://doi.org/10.1088/1361-6560/ab2f1f 

  10. Mertens CJ, Kress BT, Wiltberger M, Blattnig SR, Slaba TS, et al., Geomagnetic influence on aircraft radiation exposure during a solar energetic particle event in October 2003, Space Weather. 8, S03006 (2010). http://doi:10.1029/2009SW000487 

  11. Mertens CJ, Meier MM, Brown S, Norman RB, Xu X, NAIRAS aircraft radiation model development, dose climatology, and initial validation, Space Weather. 11, 603-635 (2013). https://doi.org/10.1002/swe.20100 

  12. O'Brien K, Smart DF, Shea MA, Felsberger E, Schrewe U, et al., World-wide radiation dosage calculations for air crew members, Adv. Space Res. 31, 835-840 (2003). https://doi.org/10.1016/S0273-1177(02)00882-7 

  13. Ploc O, Pachnerova Brabcova K, Spurny F, Malusek A, Dachev T, Use of energy deposition spectrometer Liulin for individual monitoring of aircrew, Radiat. Prot. Dosimetr. 144, 611-614 (2011). https://doi.org/10.1093/rpd/ncq505 

  14. Spurny F, Response of a Si-diode-based device to fast neutrons, Radiat. Meas. 39, 219-223 (2005). https://doi.org/10.1016/j.radmeas.2004.05.006 

  15. Wilson JW, Mertens CJ, Goldhagen P, Friedberg W, De Angelis G, et al., Atmospheric ionizing radiation and human exposure, NASA Technical Publication, NASA/TP-2005-213935 (2005). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로