$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biot 파동전파 이론을 이용한 지반의 투수계수 산정
Estimation of Hydraulic Conductivity of Soils Based on Biot's Theory of Wave Propagation 원문보기

韓國地盤工學會論文集 = Journal of the Korean geotechnical society, v.36 no.12, 2020년, pp.7 - 16  

송정락 (Dept. of Civil Engrg., Univ. of Nebraska-Lincoln) ,  김진원 (Samsung Engrg. Ltd.)

초록
AI-Helper 아이콘AI-Helper

본 연구는 음향학적 기법을 이용하여 지반의 투수계수를 산정하는 새로운 방법을 제시하였다. 연구를 위하여 Biot의 특성 진동수(Characteristic Frequency) 와 지반의 투수계수의 연관성이 포화된 지반에서만 나타나는 것을 확인할 수 있도록 음파의 감쇠 및 전파속도 특성을 포화된 시료와 건조된 시료에 대하여 측정/비교 하였다. 본 연구에서의 시험결과는 특성 진동수는 포화된 지반에서만 나타나며, 음파의 감쇠 특성으로 부터 얻은 특성 진동수와 전파속도 특성으로 부터 얻은 특성 진동수가 서로 매우 유사한 범위를 나타내었다. 한편 음파의 전파속도로 부터 얻은 결과가 감쇠 특성으로부터 얻은 결과보다 판독성이 좀 더 좋은 것으로 나타났다. 또한 본 시험결과를 동일한 시료에 대한 정수위 투수시험결과와 비교했을때 서로가 합리적으로 상응하는 결과를 나타내었으며, 본 연구에서 사용된 음향학적 기법이 사질토 또는 실트질 사질토의 투수계수를 구할 수 있는 비파괴 시험으로 사용될 수 있는 가능성을 보여 주었다.

Abstract AI-Helper 아이콘AI-Helper

This study presents an acoustic technique to estimate the hydraulic conductivity of soils. Acoustic attenuation and propagation velocity spectra were measured for dry and saturated sandy specimens to confirm that the relationship between Biot's characteristic frequency and its associated hydraulic c...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • (3) Both the 1/Q and velocity spectra show the same characteristic frequency. However, velocity spectra present a more consistent characteristic frequency.
  • 8. Any free water was removed from the surface of the soil.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Biot, M. A. (1956a), "Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Rock: I. Low Frequency Range", J. Acoust. Soc. Am., Vol.28, No.2, pp.168-178. 

  2. Biot, M. A. (1956b), "Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Rock: II. Higher Frequency Range", J. Acoust. Soc. Am., Vol.28, No.2, pp.179-191. 

  3. Biot, M. A. (1962), "General Theory of Acoustic Propagation in Porous Dissipative Media", J. Acoust. Soc. Am., Vol.34, No.9A, pp.1254-1264. 

  4. Block, G. I. (2004), "Coupled acoustic and electromagnetic disturbances in a granular material saturated by a fluid electrolyte", Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, Illinois, pp.1-160 

  5. Buckingham, M. J. (2004), "A Three-parameter Dispersion Relationship for Biot's Fast Compressional Wave in a Marine Sediment", J. Acoust. Soc. Am., Vol.116, No.2, pp.769-776. 

  6. Chalermyanont, T. and Arrykul, S. (2005), "Compacted Sand-bentonite Mixtures for Hydraulic Containment Liners", Songklanakarin J. Sci. Technol., Vol.27, No.2, pp.313-323. 

  7. Diallo, M. S., Prasad, M., and Appel, E. (2003), "Comparison between Experimental Results and Theoretical Predictions for P - Wave Velocity and Attenuation at Ultrasonic Frequency", Wave motion, Vol.37, No.1, pp.1-16. 

  8. Dvorkin, J. and Nur, A. (1993), "Dynamic Poroelasticity : A Unified Model with the Squirt and the Biot Mechanisms", Geophysics, Vol.58, No.4, pp.524-533. 

  9. Dvorkin, J., Nolen-Hoeksema R., and Nur, A. (1994), "The Squirtflow Mechanism: Macroscopic Description", Geophysics, Vol.59, No.3, pp.428-438. 

  10. Dvorkin, J., Mavko, G., and Nur, A. (1995), "Squirt Flow in Fully Saturated Rocks", Geophysics, Vol.60, No.1, pp.97-107. 

  11. Emerson, M. and Foray, P. (2006), "Laboratory P-wave Measurements in Dry and Saturated Sand", Acta Geotechnica, Vol.1, No.3, pp.167-177. 

  12. Fratta, D. and Santamarina, J. C. (1996), "Wave Propagation in Soils: Multi-mode, Wide-band Testing in a Waveguide Device", Geotech. Testing J., ASTM, Vol.19, No.2, pp.130-140. 

  13. Hamdi, F. and Smith, D. T. (1982), "The Influence of Permeability on Compressional Wave Velocity in Marine Sediments", Geophysical Prospecting, Vol.30, No.5, pp.622-640. 

  14. Hamilton, E. L. (1972), "Compressional Wave Attenuation in Marine Sediments", Geophysics, Vol.37, No.4, pp.620-646. 

  15. Haarten, M. W. (1995), Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-Elastic Media and its Applications in Geophysical Exploration, Ph. D. Dissertation, MIT, pp.1-325 

  16. Hickey, C. J. and Sabatier, J. M. (1997), "Measurement of Two Types of Dilatational Waves in an Air-filled Unconsolidated Sand", J. Acoust. Soc. Am., Vol.102, No.1, pp.128-136. 

  17. Hughes, E. R., Leighton, T. G., Petley, G. W., White, P. R., and Chivers, R. C. (2003), "Estimation of Critical and Viscous Frequencies for Biot Theory in Cancellous Bone", Ultrasonics, Vol.41, No.5, pp.356-368. 

  18. Johnson, D. L., Koplik, J., and Dashen, R. (1987), "Theory of Dynamic Permeability and Tortuosity in Fluid-saturated Porous Media", J. Fluid Mech, Vol.176, pp.379-402. 

  19. Johnston, D. H., Toksoz, M. N., and Timur, A. (1979), "Attenuation of Seismic Waves in Dry and Saturated Rocks: II. Mechanisms", Geophysics, Vol.44, No.4, pp.691-711. 

  20. Jones, T. D. (1986), "Pore Fluids and Frequency-dependent Wave Propagation in Rocks", Geophysics, Vol.51, No.10, pp.1939-1953. 

  21. Kim, J. (2010), "Estimation of hydraulic conductivity based on HK (Hydro-Kinetic) and EHK (Electro-Hydro-Kinetic) coupled mechanisms", Ph. D. Dissertation, Dept. of Civil Engineering, University of Mississippi, 197p. 

  22. Lee, K. I., Humphrey, V. F., Kim, B. N., and Yoon, S. W. (2007), "Frequency Dependencies of Phase Velocity and Attenuation Coefficient in a Water-saturated Sandy Sediment from 0.3 to 1.0 MHz", J. Acoust. Soc. Am., Vol.121, No.5, pp.2553-2558. 

  23. Lopatnikov, S. L. and Cheng, A. H.-D. (2004), "Macroscopic Lagrangian Formulation of Poroelasticity with Porosity Dynamics", J. of Mec. and Phys. of Solids, Vol.52, No.12, pp.2801-2839. 

  24. Lu, Z., Hickey, C. J., and Sabatier, J. M. (2004), "Effects of Compaction on the Acoustic Velocity in Soils", Soil Sci. Soc. Am. J., Vol.68, pp.7-16. 

  25. Nolle, A. W., Hoyer, W. A., Mifsud, J. F., Runyan, W. R., and Ward, M. B. (1963), "Acoustic properties of water-filled sand", J. Acoust. Soc. Am., Vol.42, No.4, pp.1394-1408. 

  26. Prasad, M. and Meissner, R. (1992), "Attenuation Mechanisms in Sands: Laboratory Versus Theoretical (Biot) data", Geophysics, Vol.57, No.5, pp.710-719. 

  27. Pride, S. R. and Berryman, J. G. (2003), "Linear Dynamics of Double-porosity Dual Permeability Materials. Ι. Governing Equations and Acoustic Attenuation", Phys. Rev. E., Vol.68, No.3, pp.036603-1-036603-10. 

  28. Raji, W. and Rietbrock, A. (2013), "Attenuation (1/Q) Estimation in Reflection Seismic Records", J. of Geophysics and Engineering, Vol.10, No.4, https://doi.org/10.1088/1742-2132/10/4/045012 

  29. Rosenblad, B., Li, J., Stokoe, II, K.H., Wilder, B., and Menq, F.-Y. (2008), "Deep Shear Wave Velocity Profiling of Poorly Characterized Soils Using the NEES Low-Frequency Vibrator", Geotechnical Earthquake Engineering and Soil Dynamics IV (GEESD IV), Sacramento, CA, May. ASCE, doi/abs/10.1061/40975(318)57 

  30. Santamarina, J. C. (in collaboration with Klein, K.A. and Fam. M.A.) (2001). Soils and Waves, John Wiley & Sons, Inc, New York, 488p. 

  31. Song, C. R., Kim, J. W., and Cheng, A. H.-D (2008), "Estimation of Soil Permeability Using an Acoustic Technique", J. Geotech. and Geoenv. Engr., ASCE, Vol.134, No.12, pp.1829-1832. 

  32. Stoll, R. D. (2002), "Velocity Dispersion in Water-saturated Granular Sediment", J. Acoust. Soc. Am., Vol.111, No.2, pp.785-793. 

  33. Velea, D., Shields, D. F., and Sabatier, J. M. (2000), "Elastic Wave Velocities in Partially Saturated Ottawa Sand: Experimental Results and Modeling", Soil Sci. Soc. Am. J., Vol.64, pp.1226-1234. 

  34. Wei, C. and Muraleetharan, K. K. (2006), "Acoustical Characterization of Fluid-saturated Porous Media with Local Heterogeneities: Theory and Application", Int. J. of Solids and Structures, Vol.43, No.5, pp.982-1008. 

  35. Williams, K. L., Jackson, D. R., Thorsos, E. I., Tang, D., and Schock, S. G. (2002), "Comparison of Sound Speed and Attenuation Measured in a Sandy Sediment to Predictions based on the Biot Theory of Porous Media", IEEE J. Ocean. Eng., Vol.27, No.3, pp.413-428. 

  36. Yamamoto, R. (2003), "Imaging Permeability Structure Within the Highly Permeable Carbonate Earth: Inverse Theory and Experiment", Geophysics, Vol.68, No.4, pp.1189-1201. 

  37. Zimmer, M. A., Prasad, M., Mavko, G., and Nur, A. (2007a), "Seismic Velocities of Unconsolidated Sands: Part 1. Pressure Trends from 0.1 to 20 MPa", Geophysics, Vol.72, No.1, pp.E1-E13. 

  38. Zimmer, M. A., Prasad, M., Mavko, G., and Nur, A. (2007b), "Seismic Velocities of Unconsolidated Sands: Part 2. Influence of Sorting-and Compaction-induced Porosity Variation", Geophysics, Vol.72, No.2, pp.E15-E25. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로