$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 경로 억제를 통한 황기 및 지치 복합물의 항염증 효과
Anti-inflammatory effect of a mixture of Astragalus membranaceus and Lithospermum erythrorhizon extracts by inhibition of MAPK and NF-κB signaling pathways in RAW264.7 cells 원문보기

Journal of applied biological chemistry, v.63 no.4, 2020년, pp.421 - 428  

최두진 (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ,  김금숙 (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ,  최보람 (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ,  이영섭 (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ,  한경숙 (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ,  이동성 (College of Pharmacy, Chosun University) ,  이대영 (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)

초록
AI-Helper 아이콘AI-Helper

본 연구는 황기와 지치 복합물인 ALM16이 lipopolysaccharide 처리에 의해 자극된 RAW264.7 대식세포의 염증반응에 미치는 영향에 대하여 조사하였다. ALM16은 RAW264.7 대식세포에 대하여 최대 200 ㎍/mL의 농도까지 독성은 보이지 않았다. 항염증 활성을 검정하기 위해 nitric oxide (NO), prostaglandin E2 (PGE2) 및 pro-inflammatory cytokines 생성량을 측정한 결과, ALM16은 각각의 생성량을 농도의존적으로 감소시켰다. 또한 ALM16은 NO와 PGE2 생성에 관여하는 inducible nitric oxide synthase (iNOS)와 cyclooxygenase-2 (COX-2)의 단백질 발현을 억제하였다. 한편, 항염증 활성 조절 기전을 확인하기 위하여 NK-κB의 핵으로의 이동과 DNA-binding activity 및 MAPK 신호전달 경로에 대한 ALM16의 영향을 확인한 결과, ALM16은 NF-κB의 핵으로 이동과 DNA-binding activity를 유의적으로 억제하였으며, JNK와 ERK 특이적으로 인산화를 억제함으로써 MAPK 신호전달 경로 활성을 억제하였다. 이러한 결과를 종합하여 볼 때 ALM16이 MAPK와 NF-κB의 신호전달 경로 억제를 통한 iNOS와 COX-2의 발현을 조절하고, 이로 인하여 NO, PGE2 및 pro-inflammatory cytokines의 생성이 감소하여 염증 반응을 조절하는 능력이 있는 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

This study investigated a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extracts (ALM16), exerts anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells, and its underlying mechanism. ALM16 was prepared by mixing AM and LE extracts in a r...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 또한, ALM16은 고지방식이로 인한 비 알콜성 지방간(non-alcoholic fatty liver disease, NAFLD) 동물 모델에서 간 지방증(hepatic steatosis) 억제 효과가 있는 것을 확인하였다[29]. 골관절염과 비알콜성 지방간 질환은 만성 염증 반응과 관련이 있기 때문에 본 연구에서 ALM16의 항염증 활성 및기전 연구를 확인하고자 하였다.
  • 대한 효과를 나타냄을 보고한 바 있다[27]. 따라서, 염증에 효과가 있는 성분을 함유하고 있는 황기 및 지치의 추출물을 혼합한 복합물(ALM16)이 LPS 처리에 의해 염증반응이 유도된 RAW264.7 대식세포에서 NF-κB 및 MAPK signaling pathway 조절을 통한 항염증 효능을 나타내는지 분자 수준에서 규명하고자 하였다.
  • 따라서 염증 조절 연구에 있어서 NF-κB의 활성화 및 핵 안으로 이동에 대한 조절은 가장 중요한 요소이다. 본 연구에서는 ALM16이 대식세포에서 LPS에의한 NF-κB의 활성 및 핵 안으로의 이동을 억제할 수 있는지 확인 하였다. Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (45)

  1. Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140: 771-776 

  2. Zhou Y, Hong Y, Huang H (2016) Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press Res 41: 901-910 

  3. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, Kumar SS (2016) Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev 2016: 5276130 

  4. Lee EH, Park HJ, Kim BO, Choi HW, Park KI, Kang IK, Cho YJ (2020) Anti-inflammatory effect of Malus domestica cv. Green ball apple peel extract on Raw 264.7 macrophages. J Appl Biol Chem 63: 117-123 

  5. Choi DH, Cho UM, Hwang HS (2018) Anti-inflammation effect of rebaudioside A by inhibition of the MAPK and NF-κB signal pathway in RAW264.7 macrophage. J Appl Biol Chem 61: 205-211 

  6. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140: 805-820 

  7. Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, Takayanagi H, Ohba Y, Taniguchi T, Honda K (2006) Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci USA 103: 15136-15141 

  8. Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND (2007) Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol 8: 1 

  9. Cagiola M, Giulio S, Miriam M, Katia F, Paola P, Macri A, Pasquali P (2006) In vitro down regulation of proinflammatory cytokines induced by LPS tolerance in pig CD14+ cells. Vet Immunol Immunopathol 112: 316-320 

  10. Yoon YK, Woo HJ, Kim Y (2015) Orostachys japonicus inhibits expression of the TLR4, NOD2, iNOS, and COX-2 genes in LPS-stimulated human PMA-differentiated THP-1 cells by inhibiting NF-κB and MAPK activation. Evid Based Complement Alternat Med 2015: 682019 

  11. Kim GS, Lee DY, Lee SE, Noh HJ, Choi JH, Park CG, Choi SI, Hong SJ, Kim SY (2013) Evaluation on extraction conditions and HPLC analysis method for bioactive compounds of Astragali radix. Korean J Medicinal Crop Sci 21: 486-492 

  12. Shahzad M, Shabbir A, Wojcikowski K, Wohlmuth H, Gobe GC (2016) The antioxidant effects of Radix Astragali (Astragalus membranaceus and related species) in protecting tissues from injury and disease. Curr Drug Targets 17: 1331-1340 

  13. Zhu H, Zhang Y, Ye G, Li Z, Zhou P, Huang C (2009) In vivo and in vitro antiviral activities of calycosin-7-O-β-D-glucopyranoside against coxsackie virus B3. Biol Pharm Bull 32: 68-73 

  14. Chan JY, Lam F, Leung P, Che C, Fung K (2009) Antihyperglycemic and antioxidative effects of an herbal formulation of radix astragali, radix codonopsis and cortex lycii in a mouse model of type 2 diabetes mellitus. Phytother Res 23: 658-665 

  15. Xiao W, Han L, Shi B (2009) Isolation and purification of flavonoid glucosides from Radix Astragali by high-speed counter-current chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 877: 697-702 

  16. Zhang Y, Shi S, Guo J, You Q, Feng D (2013) On-line surface plasmon resonance-high performance liquid chromatography-tandem mass spectrometry for analysis of human serum albumin binders from Radix Astragali. J Chromatogr A 1293: 92-99 

  17. Su X, Huang Q, Chen J, Wang M, Pan H, Wang R, Zhou H, Zhou Z, Liu J, Yang F, Li T, Liu L (2016) Calycosin suppresses expression of pro-inflammatory cytokines via the activation of p62/Nrf2-linked heme oxygenase 1 in rheumatoid arthritis synovial fibroblasts. Pharmacol Res 113: 695-704 

  18. Zhang WJ, Hufnagl P, Binder BR, Wojta J (2003) Antiinflammatory activity of astragaloside IV is mediated by inhibition of NF-kappa B activation and adhesion molecule expression. Thromb Haemost 90: 904-914 

  19. Lee DY, Noh HJ, Choi J, Lee KH, Lee MH, Lee JH, Hong Y, Lee SE, Kim SY, Kim GS (2013) Anti-Inflammatory cycloartane-type saponins of Astragalus membranaceus. Molecules. 18: 3725-3732 

  20. Kim GS, Kim HJ, Lee DY, Choi SM, Lee SE, Noh HJ, Choi JG, Choi SI (2013) Effects of supercritical fluid extract, shikonin and acetylshikonin from Lithospermum erythrorhizon on chondrocytes and MIA-induced osteoarthritis in rats. Korean J Medicinal Crop Sci 21: 466-473 

  21. Papageorgiou VP, Assimopoulou AN, Couladouros EA, Hepworth D, Nicolaou KC (1999) The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew Chem Int Ed Engl 38: 270-301 

  22. Gwon SY, Ahn JY, Chung CH, Moon BK, Ha TY (2012) Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of Lithospermum erythrorhizon, inhibits adipocyte differentiation. J Agric Food Chem 60: 9089-9096 

  23. Kim GS, Park CG, Lee KH, Choi JH, Lee SE, Noh HJ, Lee JH, Kim SY (2011) Investigation of shikonin pigments and antioxidant activity of the roots from Lithospermum erythrorhizon according to the different growth stages and areas of cultivation. Korean J Medicinal Crop Sci 19: 435-440 

  24. Kim JS, Han YS, Kang MH (2006) Identification of shikonin and its derivatives from Lithospermum erythrorhizon. J Korean Soc Food Sci Nutr 35: 177-181 

  25. Chung HS, Kang M, Cho C, Park S, Kim H, Yoon YS, Kang J, Shin MK, Hong MC, Bae H (2005) Inhibition of lipopolysaccharide and interferon-gamma-induced expression of inducible nitric oxide synthase and tumor necrosis factor-alpha by Lithospermi radix in mouse peritoneal macrophages. J Ethonophamocol 102: 412-417 

  26. Yoshida LS, Kakegawa T, Yuda Y, Takano-Ohmuro H (2017) Shikonin changes the lipopolysaccharide-induced expression of inflammation-related genes in macrophages. J Nat Med 71: 723-734 

  27. Choi DJ, Choi BR, Lee DY, Choi SI, Lee YS, Kim GS (2019) Inhibitory effect of mixed extracts obtained from Astragali Radix and Lithospermi Radix on matrix metalloproteinases in IL-1β-induced SW1353 cells and quantitative analysis of active compounds. Korean J Medicinal Crop Sci 27: 247-258 

  28. Choi DJ, Choi SI, Choi BR, Lee YS, Lee DY, Kim GS (2019) Cartilage protective and anti-analgesic effects of ALM16 on monosodium iodoacetate induced osteoarthritis in rats. BMC complement Altern Med 19: 325 

  29. Choi DJ, Kim SC, Park GE, Choi BR, Lee DY, Lee YS, Park SB, Park YI, Kim GS (2020) Protective effect of a mixture of Astragalus membranaceus and Lithospermum erythrorhizon extract against hepatic steatosis in high fat diet-induced nonalcoholic fatty liver disease mice. Evid Based Complement Alternat Med 2020: 8370698 

  30. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294: 1871-1875 

  31. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051-3064 

  32. Hanada T, Yoshimura A (2002) Regulation of cytokine signaling and inflammation. Cytokine Growth F R 13: 413-421 

  33. Dinarello CA (1999) Cytokines as endogenous pyrogens. J Infect Dis 179: 294-304 

  34. Masters SL, Simon A, Aksentijevich I, Kastner DL (2009) Horror autoinflammaticus: The molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol 27: 621-668 

  35. Chung YS, Choi M, Park I, Park KY, Kim KH (2010) Effects of chitosan on the production of TNF-α, IL-1β, and IL-6 in mice. Cancer Prev Res 15: 204-210 

  36. Park MJ, Park HJ, Lee EH, Jung HY, Cho YJ (2018) Anti-inflammatory effect potentials of ethanol extracts from fermentated Caryopteris incana by Lactobacillus plantarum in induced to LPS with Raw 264.7 cell. J Appl Biol Chem 61: 141-150 

  37. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol.Rev 43: 109-142 

  38. Liu SF, Malik AB (2006) NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290: L622-L645 

  39. Chan AT (2003) Aspirin, non-steroidal anti-inflammatory drugs and colorectal neoplasia: Future challenges in chemoprevention. Cancer Causes Control 14: 413-418 

  40. Yang EJ, Kim MS, Kim SY, Hyun CG (2019) Anti-inflammatory activity of Euphorbia jolkini extract in lipopolysaccharide-stimulated RAW264.7 cells. KSBB J 34: 120-125 

  41. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res 480: 243-268 

  42. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26: 3291-3310 

  43. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912 

  44. Kim HK (2014) Role of ERK/MAPK signalling pathway in anti-inflammatory effects of Ecklonia cava in activated human mast cell line-1 cells. Asian Pac J Trop Med 7: 703-708 

  45. Lee SC, Sim SY, Kim YS (2016) Effects of Gardeniae Fructus on the metabolic process of antioxidant and anti-inflammation by JNK and NF-κB. J Korean Med Ophthalmol Otolaryngol Dermatol 29: 56-64 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로