$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내 순환유동층보일러(Circulating fluidized bed combustion) 석탄재의 희토류 농축
Enrichment of Rare Earth Elements Contained in Coal Ashes from Korea Circulating Fluidized Bed Combustion (CFBC) 원문보기

資源리싸이클링 = Journal of the Korean Institute of Resources Recycling, v.29 no.6, 2020년, pp.125 - 132  

김영진 (한국석회석신소재연구소 연구개발부) ,  최문관 (한국석회석신소재연구소 연구개발부) ,  서준형 (한국석회석신소재연구소 연구개발부) ,  김병렬 (한국석회석신소재연구소 연구개발부) ,  조계홍 (한국석회석신소재연구소 연구개발부)

초록
AI-Helper 아이콘AI-Helper

국내 순환유동층보일러형 발전소 석탄재의 주요 광물 및 희토류의 이동특성을 분석하여 석탄재 중 희토류 성분의 농축 가능성 검토를 위해 체 분리 및 침출을 통한 주요 광물의 분리 및 제거에 따른 희토류 성분의 이동특성을 평가하였다. 석탄재의 주요 광물로는 경석고, 자철석석영으로 확인되었으며, 세계 석탄재 희토류 평균값(404 ppm)의 30% 수준 함량으로 확인되었다(실험대상: 123 ppm). 석탄재에 포함된 희토류 성분 중 90% 이상은 주로 자철석과 함께 이동하는 특성을 보였고, 10% 이하의 성분이 석영과 함께 이동하는 것으로 확인되었다. 이는 발전소 연소 방식 차이에 따라 발생된 석탄재 특성에 따른 영향으로 판단된다. 이에 국내 순환유동층보일러 석탄재로부터 희토류 성분 농축을 위해서는 자철석 분리가 필요하며, 이와 관련된 선별 기술 개발 및 확보가 요구된다고 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Enrichment possibilities for recovering rare earth elements contained in coal bottom ash generated from domestic circulating fluidized bed combustion (CFBC) were identified. The transport characteristics of the REEs according to the separation and removal of major minerals were evaluated using sievi...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 국내 CFBC 발전소로부터 얻은 석탄재의 주요 광물 및 이러한 광물과 함께 이동하는 희토류 성분의 특성을 확인하여 석탄재에 포함된 희토류의 농축 가능성을 검토하였다. 체분리 및 침출을 통해 주요 광물의 분리 및 제거에 따른 희토류 성분의 이동특성을 확인하였다.
  • 석탄재로부터 희토류 회수에 관한 연구는 전무하며 희토류 함량 특성에 관한 연구만 일부 발표되었다 16). 이에 본 연구에서는 화력발전 중 미래에 발전 가능성이 있는 순환유동층보일러(Circulating fluidized bed combustion, 이하 CFBC) 발전소로부터 발생된 석탄재를 실험대상으로, 희토류 성분의 함량 및 분포특성을 확인하였고, 주요 광물 제거에 따른 희토류 성분의 이동특성을 확인하여 희토류 농축을 위한 선별기술에 대해 검토하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (27)

  1. Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., et al., 2020 : The story of rare earth elements(REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production, Ore Geology Reviews, 122, pp. 1-17. 

  2. Lee, M. S., and Jeon, H. S., 2010 : Extractive metallurgy and separation technology of rare earth ores, J. of Korean Inst. of Resources Recycling, 19(6), pp.27-35. 

  3. Zhou, B., Li, Z., Chen, C., 2017 : Global potential of rare earth resources and rare earth demand from clean technologies, minerals, 7(11), 203. 

  4. Zhang, W., Yang, X., Honaker, R. Q., 2018 : Association characteristics study and preliminary recovery investigation of rare earth elements from fire clay seam coal middlings, Fuel, 215, pp.551-560. 

  5. Honaker, R. Q., Zhang, W., Werner, J., 2019 : Acid leaching of rare earth elements from coal and coal ash: implications for using fluidized bed combustion to assist in the recovery of critical materials, Energy and Fuel, 33, pp.5971-5980. 

  6. Kim, Y. D., and Ko, C. S., 2010 : REE resources and it's utilization, Econ. Envron. Geol., 43(5), pp.505-516. 

  7. Seredin, V. V., and Dai, S., 2012 : Coal deposits as potential alternative sources for lanthanides and yttrium, Int. J. Coal. Geol., 94, pp.67-93. 

  8. Kim, Y. J., 2013 : Strategy of critical materials management in the world, J. of Korean Inst. of Resources Recycling, 22(5), pp. 3-12. 

  9. Franus, W., Wiatros-Motyka, M. M., and Wdowin, M., 2015 : Coal fly as a resource for rare earth elements, Environ Sci Pollut Res, 22, pp.9464-9474. 

  10. Dai, S., Graham, I. T., and Ward, C. R., 2016 : A review of anomalous rare earth elements and yttrium in coal, Int. J. Coal. Geol., 159, pp.82-95. 

  11. Taggart, R. K., Hower, J. C., Dwyer, G. S., et al., 2016 : Trends in the rare earth element content of U.S.-based coal combustion fly ashes, Environ. Sci, Technol, 50, pp.5919- 5926. 

  12. Folgueras, M. B., Alonso, M., and Fernandez, F. J., 2017 : Coal and sewage sludge ashes as sources of rare earth elements, Fuel, 192, pp.128-139. 

  13. Blissett, R. S., Smalley, N., and Rowson, N. A., 2014 : An investigation into six coal fly ashes from the United Kingdom and poland to evaluate rare element content, Fuel, 119, pp.236-239. 

  14. Seredin, V. V., 2010 : A new method for primary evaluation of the outlook for rare earth element ores, Geol. Ore Deposits, 52(5), pp.428-433. 

  15. Lin, R., Howard, B. H., Roth, E. A., 2017 : Enrichment of rare earth elements from coal and coal by-products by physical separations, Fuel, 200, pp.506-520. 

  16. Park, S. U., Kim, J. K., Seo, Y. S., et al., 2015 : Evaluation of some rare metals and rare earth metals contained in coal ash of coal-fired power plants in Korea, J. of Korean Inst. of Resources Recycling, 24(4), pp.67-75. 

  17. Hower, J., Groppo, J., Joshi, P., et al., 2013 : Location of cerium in coal-combustion fly ashes: implications for recovery of lanthanide, Coal combustion and gasfication products, 3, pp.73-78. 

  18. Dai, S., Zhao, L., Hower, J. C., et al., 2014 : Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, inner Mongolia, China, with emphasis in the distribution of rare earth elements, Energy and Fuel, 28, pp.1502-1514. 

  19. Pan, J., Zhou, C., Tang, M., et al., 2019 : Study on the modes occurrence of rare earth elements in coal fly ash by statics and and a sequential chemical extraction procedure, Fuel, 237, pp.555-565. 

  20. Peramaki, S. E., Tiihonen, A. J., and Vaisanen, A. O., 2019 : Occurence and recovery potential of rare earth elements in finish peat and biomass combustion fly ash, Journal of geochemical exploration, 201, pp.71-78. 

  21. Jang, J. K., Ji, S. W., and Ahn, J. W., 2017 : Utilization of circulating fluidized bed combustion ash and related specifications for mine backfills, J. of Korean Inst. of Resources Recycling, 26(2), pp.71-79. 

  22. Zeng, T., Helble, J. J., Bool, L. E., et al., 2009 : Iron transformations during combustion of Pittsburgh no. 8 coal, Fuel, 88, pp.566-572. 

  23. Moore, F., and Esmaeili, Ali., 2012 : Mineralogy and geochemistry of the coals from the karmodz and kiasar coal mines, International journal of coal geology, 96-97, pp.9-21. 

  24. Yang, J., Zhao, Y., Zyryanov, V., et al., 2014 : Physicalchemical characteristics and elements enrichment of magnetospheres from coal fly ashes, Fuel, 135, pp.15-26. 

  25. Kolker, A., Scott, C., Hower, J. C., et al., 2017 : Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe, International journal of coal geology, 184, pp.1-10. 

  26. Bock, E., 1961 : On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25 ℃, 30 ℃, 40 ℃, and 50 ℃, Can. J. Chem., 39, pp.1746-1751. 

  27. Salmimies, R., Mannila M., Kallas, J., et al., 2011 : Acidic dissolution of magnetite: experimental study on the effects of acidic concentration and temperature, Clay and clay minerals, 59, pp.136-146. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로