$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

난분해성 산업폐수 처리를 위한 고도산화기술
Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater 원문보기

上下水道學會誌 = Journal of Korean Society of Water and Wastewater, v.34 no.6, 2020년, pp.445 - 462  

김민식 (서울대학교 화학생물공학부, 화학공정신기술연구소) ,  이기명 (서울대학교 화학생물공학부, 화학공정신기술연구소) ,  이창하 (서울대학교 화학생물공학부, 화학공정신기술연구소)

Abstract AI-Helper 아이콘AI-Helper

Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensi...

주제어

참고문헌 (70)

  1. Adams, C.D., Fusco, F., and Kanzelmeyer, T. (1995). Ozone, hydrogen peroxide/ozone and UV/ozone treatment of chromium- and copper-complex dyes: Decolorization and metal release, Ozone Sci. Eng., 17(2), 149-162. 

  2. Amor, C., Marchao, L., Lucas, M.S., Peres, J.A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review, Water, 11(2), 205. 

  3. Babu, B.R., Meera, K.S., Venkatesan, P., and Sunandha, D. (2010). Removal of fatty acids from palm oil effluent by combined electro-fenton and biological oxidation process, Water Air Soil Pollut., 211(1-4), 203-210. 

  4. Baig, S. and Liechti, P.A. (2001). Ozone treatment for biorefractory COD removal, Water Sci. Technol., 43(2), 197-204. 

  5. Bailey, P.S. (1982). Ozonation in Organic Chemistry Volume II Nonolefinic Compounds. Academic Press Inc., New York. 

  6. Barbusinski, K. (2005). Toxicity of industrial wastewater treated by Fenton's reagent, Pol. J. Environ. Stud., 14(1), 11-16. 

  7. Bard, A.J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solution. Marcel Dekker Inc., New York and Basel. 

  8. Barder, H. and Hoigne, J. (1981). Determination of ozone in water by the indigo method, Water Res., 15(4), 449-456. 

  9. Bayar, S., Massara, T.M., Boncukcuoglu, R., Komesli, O.T., Malamis, S., and Katsou, E. (2018). Advanced treatment of industrial wastewater from pistachio processing by Fenton process, Desalin. Water Treat., 112, 106-111. 

  10. Bilinska, L., Blus, K., Gmurek, M., Ledakowicz, S. (2019). Coupling of electrocoagulation and ozone treatment for textile wastewater reuse, Chem. Eng. J., 358, 992-1001. 

  11. Boonrattanakij, N., Lu, M.C., and Anotai, J. (2011). Iron crystallization in a fluidized-bed Fenton process, Water Res., 45(10), 3255-3262. 

  12. Boopathy, R., and Das, T. (2018). New approach of integrated advanced oxidation processes for the treatment of lube oil processing wastewater, Arab. J. Sci. Eng., 43(11), 6229-6236. 

  13. Brillas, E., Sires, I., and Oturan, M.A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry, Chem. Rev., 109(12), 6570-6631. 

  14. Buffle, M.O. and von Gunten, U. (2006). Phenols and amine induced HO generation during the initial phase of natural water ozonation, Environ. Sci. Technol., 40(9), 3057-3063. 

  15. Buehler, R.E., Staehelin, J., and Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 1. HO 2 /O 2 - and HO 3 /O 3 - as intermediates, J. Phys. Chem. 88(12), 2560-2564. 

  16. Criegee, R. (1975). Mechanism of ozonolysis, Angew. Chem., Int. Ed. Engl., 14(11), 745-752. 

  17. Chachou, L., Gueraini, Y., Bouhalouane, Y., Poncin, S., Li, H.Z., and Bensadok, K. (2015). Application of the electro-Fenton process for cutting fluid mineralization, Environ. Technol., 36(15), 1924-1932. 

  18. Chen, M., Ren, H., Ding, L., and Gao, B. (2015). Effect of different carriers and operating parameters on degradation of flax wastewater by fluidized-bed Fenton process, Water Sci. Technol., 71(12), 1760-1767. 

  19. Daghrir, R., Drogui, P., and Robert, D. (2013). Modified TiO 2 for environmental photocatalytic applications: a review, 52(10), 3581-3599. 

  20. Eisenhauer, H.R. (1964). Oxidation of phenolic wastes, J. Water Pollut. Control. Fed., 36(9), 1116-1128. 

  21. Elovitz, M.S. and von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept, Ozone Sci. Eng., 21(3), 239-260. 

  22. Ershov, B.G. and Morozov, P.A. (2009). The kinetics of ozone decomposition in water, the influence of pH and temperature, Russ. J. Phys. Chem. A, 83(8), 1295-1299. 

  23. Fenton, H.J.H. (1894). LXXIII.-Oxidation of tartaric acid in presence of iron, J. Chem. Soc. Trans., 65, 899-910. 

  24. Garcia-Segura, S., Bellotindos, L.M., Huang, Y.H., Brillas, E., and Lu, M.C. (2016). Fluidized-bed Fenton process as alternative wastewater treatment technology-A review, J. Taiwan Inst. Chem. Eng., 67, 211-225. 

  25. Ghanbari, F., and Moradi, M. (2015). A comparative study of electrocoagulation, electrochemical Fenton, electroFenton and peroxi-coagulation for decolorization of real textile wastewater: electrical energy consumption and biodegradability improvement, J. Environ. Chem. Eng., 3(1), 499-506. 

  26. Godini, K., Azarian, G., Rahmani, A.R., and Zolghadrnasab, H. (2013). Treatment of waste sludge: a comparison between anodic oxidation and electro-Fenton processes, J. Res. Health. Sci., 13(2), 188-193. 

  27. Gahr, F., Hermanutz, F., and Oppermann, W. (1994). Ozonation - An important technique to comply with new german laws for textile wastewater treatment, Water Sci. Technol., 30(3), 255-263. 

  28. Gu, Z., Wang, Y., Feng, K., and Zhang, A. (2019). A comparative study of dinitrodiazophenol industrial wastewater treatment: Ozone/hydrogen peroxide versus microwave/persulfate, Process Saf. Environ., 130, 39-47. 

  29. Gulyas, H., von Bismarck, R., and Hemmerling, L. (1995). Treatment of industrial wastewaters with ozone/ hydrogen peroxide, Water Sci. Technol., 32(7), 127-134. 

  30. Gunes, E., Cifci, D.I., and Celik, S.O. (2018). Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater, Environ. Technol., 39(7), 824-830. 

  31. He, D., Guan, X., Ma, J., and Yu, M. (2009). Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate, Environ. Sci. Technol., 43(21), 8332-8337. 

  32. Ikehata, K. and El-Din, M.G. (2005). Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: A review (Part I), Ozone Sci. Eng., 27(2), 83-114. 

  33. Ingles, D.L. (1972). Studies of oxidation by Fenton's reagent using redox titration. I. Oxidation of some organic compounds, Aust. J. Chem., 25(1), 87-95. 

  34. Perkowski, J., Kos, L., and Ledakowicz, S. (1996). Application of ozone in textile wastewater treatment, Ozone Sci. Eng., 18(1), 73-85. 

  35. Joss, A., Zabczynski, S., Gobel, A., Hoffmann, B., Loffler, D., McArdell, C.S., Ternes, T.A., Thomsen, A., and Siegrist, H. (2006). Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme, Water Res., 40(8), 1686-1696. 

  36. Karami, M.A., Amin, M.M., Nourmoradi, H., Sadani, M., Teimouri, F., Bina, B. (2016). Degradation of reactive red 198 from aqueous solutions by advanced oxidation process: O 3 , O 3 /H 2 O 2 , and persulfate, Int. J. Environ. Health Eng., 5, 26. 

  37. Khadhraoui, M., Trabelsi, H., Ksibi, N., Bouguerra, S., and Elleuch, B. (2009). Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse, J. Hazard. Mater., 161(2-3), 974-981. 

  38. Kim, J., Lee, C.W., and Choi, W. (2010). Platinized WO 3 as an environmental photocatalyst that generates OH radicals under visible light, Environ. Sci. Technol., 44(17), 6849-6854. 

  39. Kim, M.S., Cha, D., Lee, K.M., Lee, H.J., Kim, T., and Lee, C. (2020). Modeling of ozone decomposition, oxidant exposure, and the abatement of micropollutants during ozonation processes, Water Res., 169, 115230. 

  40. Koppenol, W.H., Stanbury, D.M., and Bounds, P.L. (2010). Electrode potentials of partially reduced oxygen species, from dioxygen to water, Free Radical Bio. Med., 49(3), 317-322. 

  41. Lee, M., Zimmermann-Steffens, S.G., Arey, J.S., Fenner, K., and von Gunten, U. (2015). Development of prediction models for the reactivity of organic compounds with ozone in aqueous solution by quantum chemical calculations: the role of delocalized and localized molecular orbitals, Environ. Sci. Technol., 49(16), 9925-9935. 

  42. Lee, Y. and von Gunten, U. (2012). Quantitative structureactivity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment, Water Res., 46(19), 6177-6195. 

  43. Lee, Y. and von Gunten, U. (2016). Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects, Environ. Sci.: Water Res. Technol., 2, 421-442. 

  44. Li, M., Li, W., Wen, D., Bolton, J.R., Blatchley, E.R., and Qiang, Z. (2019). Micropollutant degradation by the UV/H 2 O 2 process: kinetic comparison among various radiation sources, Environ. Sci. Technol., 53(9), 5241-5248. 

  45. Lin, S.H. and Lo, C.C. (1997). Fenton process for treatment of desizing wastewater, Water Res., 31(8), 2050-2056. 

  46. Liu, J., Li, J., Mei, R., Wang, F., and Sellamuthu, B. (2014). Treatment of recalcitrant organic silicone wastewater by fluidized-bed Fenton process, Sep. Purif. Technol., 132, 16-22. 

  47. Lucas, M.S., Peres, J.A., and Puma, G.L. (2010). Treatment of winery wastewater by ozone-based advanced oxidation processes (O 3 , O 3 /UV and O 3 /UV/H 2 O 2 ) in a pilot-scale bubble column reactor and process economics, Sep. Purif. Technol., 72(3), 235-241. 

  48. Maamar, M., Naimi, I., Mkadem, Y., Souissi, N., and Bellakhal, N. (2015). Electrochemical oxidation of bromothymol blue: Application to textile industrial wastewater treatment, J. Adv. Oxid. Technol., 18(1), 105-113. 

  49. Martinez, N.S.S., Fernandez, J.F., Segura, X.F., and Ferrer, A.S. (2003). Pre-oxidation of an extremely polluted industrial wastewater by the Fenton's reagent, J. Hazard. Mater., 101(3), 315-322. 

  50. Messele, S.A., Bengoa, C., Stuber, F.E., Giralt, J., Fortuny, A., Fabregat, A., and Font, J. (2019). Enhanced degradation of phenol by a Fenton-like system (Fe/EDTA/H 2 O 2 ) at circumneutral pH, Catalysts, 9(5), 474 

  51. Minakata, D., Li, K. and Westerhoff, J.C. (2009). Development of a group contribution method to predict aqueous phase hydroxyl radical (HO·) reaction rate constants, Environ. Sci. Technol., 43(16), 6220-6227. 

  52. Neta, P. and Dorfman, L.M. (1968). Pulse radiolysis studies. XIII. Rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solutions, Adv. Chem., 81, 222-230. 

  53. Peng, R., Yu, P., and Luo, Y. (2017). Coke plant wastewater posttreatment by Fenton and electro-Fenton processes, Environ. Eng. Sci., 34(2), 89-95. 

  54. Qi, L., Wang, X., Xu, Q. (2011). Coupling of biological methods with membrane filtration using ozone as pre-treatment for water reuse, Desalination, 270(1-3), 264-268. 

  55. Rice, R.G., Robson, C.M., Miller, G.W., and Hill, A.G. (1981). Uses of ozone in drinking water treatment, J. Am. Water Works Ass., 73(1), 44-57. 

  56. Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., and Wehrli, B. (2006). The challenge of micropollutants in aqueous systems, Science, 313(5790), 1072-1077. 

  57. Siddiqui, M., Amy, G., Ozekin, and K., Westerhoff, P. (1994). Empirically and theoretically-based models for predicting brominated ozonated by-products, Ozone Sci. Eng., 16(2), 157-178. 

  58. Sohn, J., Amy, G., Cho, J., Lee, Y., and Yoon, Y. (2004). Disinfection decay and disinfection by-products formation model development: chlorination and ozonation by-products, Water Res. 38(10), 2461-2478. 

  59. Staehelin, J. and Hoigne, J. (1982). Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 16(10), 676-681. 

  60. Staehelin, J. and Hoigne, J. (1985). Decomposition of ozone in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions, Environ. Sci. Technol., 19(12), 1206-1213. 

  61. Su, C.C., Pukdee-Asa, M., Ratanatamskul, C., and Lu, M.C. (2011). Effect of operating parameters on the decolorization and oxidation of textile wastewater by the fluidized-bed Fenton process, Sep. Purif. Technol., 83, 100-105. 

  62. Swietlik, J. and Sikorska, E. (2004). Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone, Water Res., 38(17), 3791-3799. 

  63. Trizaoui, C. and Grima, N. (2011). Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution, Chem. Eng. J., 173(2), 463-473. 

  64. Ulucan, K. and Kurt, U. (2015). Comparative study of electrochemical wastewater treatment processes for bilge water as oily wastewater: a kinetic approach, J. Electroanal. Chem., 747, 104-111. 

  65. von Gunten, U. and Hoigne, J. (1994). Bromate formation during ozonation of bromide-containing waters: interaction of ozone and hydroxyl radical reactions, Environ. Sci. Technol., 28(7), 1234-1242. 

  66. Wols, B.A., Hofman-Caris, C.H.M., Harmsen, D.J.H., and Beerendonk, E.F. (2013). Degradation of 40 selected pharmaceuticals by UV/H 2 O 2 , Water Res., 47(15), 5876-5888. 

  67. Wu, J. and Doan, H. (2005). Disinfection of recycled red-meat-processing wastewater by ozone, J. Chem. Technol. Biotechnol., 80(7), 828-833. 

  68. Yan-yang, C., Yi, Q., and Mao-juan, B. (2009). Three advanced oxidation processes for the treatment of the wastewater from acrylonitrile production, Water Sci. Technol., 60(11), 2991-2999. 

  69. Yao, C.C.D. and Haag, W.R. (1991). Rate constants for direct reactions of ozone with several drinking water contaminants, Water Res., 25(7), 761-773. 

  70. Zepp, R.G., Faust, B.C., and Hoigne, J. (1992). Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction, Environ. Sci. Technol., 26(2), 313-319. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로