$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Design of Semiconducting Gas Sensors for Room-Temperature Operation 원문보기

Journal of sensor science and technology = 센서학회지, v.29 no.1, 2020년, pp.1 - 6  

Song, Young Geun (Display and Nanosystem Laboratory, School of Electronic Engineering, Korea University) ,  Kim, Gwang Su (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ,  Ju, Byeong-Kwon (Display and Nanosystem Laboratory, School of Electronic Engineering, Korea University) ,  Kang, Chong-Yun (Center for Electronic Materials, Korea Institute of Science and Technology (KIST))

Abstract AI-Helper 아이콘AI-Helper

Gas sensors that operate at room temperature have been extensively studied because of sensor stability, lift time, and power consumption. To design effective room-temperature gas sensors, various nanostructures, such as nanoparticles, nanotubes, nanodomes, or nanofibers, are utilized because of thei...

주제어

참고문헌 (30)

  1. L. Atzori, A. Iera, and G. Morabito, "The internet of things: A survey", Comput. Netw., Vol. 54, No. 15, pp. 2787-2805, 2010. 

  2. R. A. Potyrailo, "Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet", Chem. Rev., Vol. 116, No. 19, pp. 11877-11923, 2016. 

  3. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, "A survey on gas sensing technology", Sensors, Vol. 12, No. 7, pp. 9635-9665, 2012. 

  4. S. Lakkis, R. Younes, Y. Alayli, and M. Sawan, "Review of recent trends in gas sensing technologies and their miniaturization potential", Sens. Rev., Vol. 34, No. 1, pp. 24-35, 2014. 

  5. N. Minh Triet, L. Thai Duy, B.-U. Hwang, A. Hanif, S. Siddiqui, K.-H. Park, C.-Y. Cho, and N.-E. Lee, "High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer", ACS Appl. Mater. Interfaces, Vol. 9, No. 36, pp. 30722-30732, 2017. 

  6. H. Nazemi, A. Joseph, J. Park, and A. Emadi, "Advanced micro-and nano-gas sensor technology: A review", Sensors, Vol. 19, No. 6, pp. 1285, 2019. 

  7. S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D. Presicce, and A. Taurino, "Solid state gas sensors: state of the art and future activities", J. Optoelectron. Adv. Mater., Vol. 5, No. 5, pp. 1335-1348, 2003. 

  8. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors", Sensors, Vol. 10, No. 3, pp. 2088-2106, 2010. 

  9. S. J. Patil, A. V. Patil, C. G. Dighavkar, K. S. Thakare, R. Y. Borase, S. J. Nandre, N. G. Deshpande, and R. R. Ahire, "Semiconductor metal oxide compounds based gas sensors: A literature review", Front. Mater. Sci., Vol. 9, No. 1, pp. 14-37, 2015. 

  10. K. Lee, Y.-S. Shim, Y. Song, S. Han, Y.-S. Lee, and C.-Y. Kang, "Highly sensitive sensors based on metal-oxide nanocolumns for fire detection", Sensors, Vol. 17, No. 2, pp. 303, 2017. 

  11. Z. Yuan, R. Li, F. Meng, J. Zhang, K. Zuo, and E. Han, "Approaches to Enhancing Gas Sensing Properties: A Review", Sensors, Vol. 19, No. 7, pp. 1495, 2019. 

  12. T. Rault, A. Bouabdallah, and Y. Challal, "Energy efficiency in wireless sensor networks: A top-down survey", Comput. Netw., Vol. 67, No.4, pp. 104-122, 2014. 

  13. J. Zhang, X. Liu, G. Neri, and N. Pinna, "Nanostructured materials for room-temperature gas sensors", Adv. Mater., Vol. 28, No. 5, pp. 795-831, 2016. 

  14. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, "Recent development of two-dimensional transition metal dichalcogenides and their applications", Mater. Today, Vol. 20, No. 3, pp. 116-130, 2017. 

  15. N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide semiconductor gas sensors", Catal. Surv. Asia, Vol. 7, No. 1, pp. 63-75, 2003. 

  16. M. Batzill, "Surface science studies of gas sensing materials: $SnO_{2}$ ", Sensors, Vol. 6, No. 10, pp. 1345-1366, 2006. 

  17. N. Barsan, and U. Weimar, "Conduction model of metal oxide gas sensors", J. Electroceram., Vol. 7, No. 3, pp. 143-167, 2001. 

  18. Y. G. Song, J. Y. Park, J. M. Suh, Y.-S. Shim, S. Y. Yi, H. W. Jang, S. Kim, J. M. Yuk, B.-K. Ju, and C.-Y. Kang, "Heterojunction Based on Rh-Decorated $WO_{3}$ Nanorods for Morphological Change and Gas Sensor Application Using the Transition Effect", Chem. Mater., Vol. 31, No. 1, pp. 207-215, 2018. 

  19. S. Y. Yi, Y. G. Song, J. Y. Park, J. M. Suh, G. S. Kim, Y.-S. Shim, J. M. Yuk, S. Kim, H. W. Jang, and B.-K. Ju, "Morphological Evolution Induced through a Heterojunction of W-Decorated NiO Nanoigloos: Synergistic Effect on High-Performance Gas Sensors", ACS Appl. Mater. Interfaces, Vol. 11, No. 7, pp. 7529-7538, 2019. 

  20. S. Bianchi, E. Comini, M. Ferroni, G. Faglia, A. Vomiero, and G. Sberveglieri, "Indium oxide quasi-monodimensional low temperature gas sensor", Sens. Actuators B, Vol. 118, No. 1-2, pp. 204-207, 2006. 

  21. X. Pan, X. Zhao, J. Chen, A. Bermak, and Z. Fan, "A fastresponse/recovery ZnO hierarchical nanostructure based gas sensor with ultra-high room-temperature output response", Sens. Actuators B, Vol. 206, pp. 764-771, 2015. 

  22. X. Tang, A. Du, and L. Kou, "Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective", Wiley Interdiscip. Rev. Comput. Mol. Sci., Vol. 8, No. 4, pp. e1361, 2018. 

  23. H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, "Fabrication of single-and multilayer $MoS_{2}$ film-based field-effect transistors for sensing NO at room temperature", Small, Vol. 8, No. 1, pp. 63-67, 2012. 

  24. K. C. Kwon, J. M. Suh, T. H. Lee, K. S. Choi, K. Hong, Y. G. Song, Y.-S. Shim, M. Shokouhimehr, C.-Y. Kang, and S. Y. Kim, " $SnS_{2}$ Nanograins on Porous $SiO_{2}$ Nanorods Template for Highly Sensitive $NO_{2}$ Sensor at Room Temperature with Excellent Recovery", ACS Sensors, Vol. 4, No. 3, pp. 678-686, 2019. 

  25. E. Espid, and F. Taghipour, "UV-LED photo-activated chemical gas sensors: A review", Crit. Rev. Solid State Mater. Sci., Vol. 42, No. 5, pp. 416-432, 2017. 

  26. S.-W. Fan, A. K. Srivastava, and V. P. Dravid, "UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO", Appl. Phys. Lett., Vol. 95, No. 14, pp. 142106, 2009. 

  27. R. Kumar, N. Goel, and M. Kumar, "UV-activated MoS2 based fast and reversible $NO_{2}$ sensor at room temperature", ACS Sensors, Vol. 2, No. 11, pp. 1744-1752, 2017. 

  28. S. Park, S. An, Y. Mun, and C. Lee, "UV-enhanced $NO_{2}$ gas sensing properties of $SnO_{2}$ -core/ZnO-shell nanowires at room temperature", ACS Appl. Mater. Interfaces, Vol. 5, No. 10, pp. 4285-4292, 2013. 

  29. Y. G. Song, Y. S. Shim, J. M. Suh, M. S. Noh, G. S. Kim, K. S. Choi, B. Jeong, S. Kim, H. W. Jang, and B. K. Ju, "Ionic-Activated Chemiresistive Gas Sensors for Room-Temperature Operation", Small, Vol. 15, No., pp. 1902065-1902073, 2019. 

  30. X. Song, Q. Qi, T. Zhang, C. Wang, "A humidity sensor based on KCl-doped $SnO_{2}$ nanofibers", Sens. Actuators B Chem., Vol. 138, No. 1, pp. 368-373, 2009. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로