$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

용존 6가 우라늄 및 실리카 표면 흡착 6가 우라늄 화학종 분포 연구
Study on the Species Distributions of Dissolved U(VI) and Adsorbed U(VI) on Silica Surface 원문보기

Journal of nuclear fuel cycle and waste technology = 방사성폐기물학회지, v.18 no.1, 2020년, pp.63 - 72  

정의창 (한국원자력연구원) ,  김태형 (한국원자력연구원) ,  조용흠 (한국과학기술원) ,  김희경 (한국원자력연구원) ,  조혜륜 (한국원자력연구원) ,  차완식 (한국원자력연구원) ,  백민훈 (한국원자력연구원) ,  윤종일 (한국과학기술원)

초록
AI-Helper 아이콘AI-Helper

용존 6가 우라늄은 다양한 화학종으로 존재하며, 화학종의 분포는 수용액의 pH에 의존한다. 산성 및 중성 근처의 pH 환경에서는 대표적으로 UO22+, UO2OH+, (UO2)2(OH)22+, (UO2)3(OH)5+ 화학종이 공존한다. 수용액 속에 비결정성 실리카콜로이드 성질의 부유입자 상태로 존재할 때 용존 화학종은 실리카 표면에 쉽게 흡착된다. 이 연구에서는 표면 흡착 화학종의 분포가 용존 화학종의 분포를 따르는지 조사하였다. 시료의 pH 값이 3.5-7.5인 조건에서 3종의 용존 화학종(UO22+, UO2OH+, (UO2)3(OH)5+)과 2종의 표면 흡착 화학종(≡SiO2UO2, ≡SiO2(UO2)OH- 또는 ≡SiO2(UO2)3(OH)5-)의 시간 분해 발광(luminescence) 스펙트럼을 측정하였다. pH 변화에 따른 각 화학종의 스펙트럼 변화 양상을 비교한 결과로 표면 흡착 U(VI) 화학종의 분포는 용존 U(VI) 화학종의 분포와 다르다는 것을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Dissolved hexavalent uranium can exist in the form of several different chemical species. Furthermore, species distributions depend on the pH value of the aqueous solution. Representatively, UO22+, UO2OH+, (UO2)2(OH)22+, and (UO2)3(OH)5+ species coexist in solutions at acidic and circumneutral pH va...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 위에서 예시한 명확하지 않은 내용들을 보완하기 위해 우리 실험실에서는 표면적 및 크기가 다른 여러 종류의 실리카 입자에 흡착된 U(VI) 표면 화학종에 대한 TRLFS 실험을 순차적으로 수행하고 있다. 그 일환으로 이 논문에서는 U(VI) 표면 화학종의 분포가 용존 U(VI) 화학종 분포를 따르는지 여부를 살펴보았다. pH 값이 3.
  • 용존 화학종을 측정할 때의 게이트 너비 (tw = 50 μs)에 비해 게이트 너비를 20배 확장시킨 이유는 pH값이 증가함에 따라 수백 μs의 긴 발광 수명을 가진 표면 화학종이 발생하므로 이를 관측하기 위해서다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
우라늄이란? 우라늄은 광물 상태로 자연 환경 중에 흔히 존재하는 원소이며, 동시에 사용후핵연료의 주성분이므로 방사성폐기물 처분 연구 분야에서 광범위하게 다루는 원소이다. 우라늄은 지 하수를 비롯한 수용액 속에 다양한 용존 화학종 상태로 존재한 다.
국내에서 TRLFS 기술을 이용한 우라늄 흡착 연구를 주로 수행하는 이유는 무엇인가? 그러나 화학종의 종류에 따라 차이가 나는 들뜸(excitation) 및 발광(luminescence) 파장, 발광 수명(lifetime)을 비교함으로써 미량 악티 나이드 화학종의 종류를 구분하는 것이 가능하다. 현재 우리 나라의 포항 방사광 가속기 시설에 설치된 EXAFS 장치에서는 악티나이드 원소를 측정하는 것이 허용되지 않기 때문에 국내에서는 TRLFS 기술을 이용한 우라늄 흡착 연구를 주로 수행하고 있다.
우라늄의 용존 화학종 상태는 어떠한것이 있는가? 우라늄은 지 하수를 비롯한 수용액 속에 다양한 용존 화학종 상태로 존재한 다. 산성부터 중성 pH 영역에서는 주로 UO2 2+ 이온과 가수분해 화합물인 UO2OH+ , (UO2)2(OH)2 2+, (UO2)3(OH)5 + 등의 상태 로 존재하며, 알칼리 pH 영역에서는 무기 이온 및 탄산염 이온이 결합된 UO2(CO3)3 4‐, CaUO2(CO3)3 2‐, Ca2UO2(CO3)3(aq) 등의 상태로 존재한다[5-9]. 실리카(이산화규소, SiO2)는 지각 중의 모든 토사와 암석 속에 많은 양이 함유되어 있으며, 지하 수 속에서는 콜로이드 성질의 부유입자(suspended particle) 형태를 띠기도 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (30)

  1. J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38(6), 459-482 (2006). 

  2. M. Altmaier, X. Gaona, and T. Fanghanel, "Recent Advances in Aqueous Actinide Chemistry and Thermodynamics", Chem. Rev., 113, 910-943 (2013). 

  3. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev., 113(2), 1016-1062 (2013). 

  4. M.H. Baik, T.J. Park, I.Y. Kim, and K.W. Choi, "Research Status and Roles of Natural Analogue Studies in the Radioactive Waste Disposal", J. Nucl. Fuel Cycle Waste Technol., 11(2), 133-156 (2013). 

  5. J.Y. Lee and J.I. Yun, "Temperature-Dependent Hydrolysis Reactions of U(VI) Studies by TRLFS", J. Nucl. Fuel Cycle Waste Technol., 1(1), 65-73 (2013). 

  6. C. Moulin, P. Decambox, V. Moulin, and J.G. Decaillon, "Uranium Speciation in Solution by Time-Resolved Laser-Induced Fluorescence", Anal. Chem., 67, 348-353 (1995). 

  7. G. Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri, and H. Nitsche, "Uranyl(VI) carbonate complex formation: Validation of the $Ca_2UO_2(CO_3)_3(aq.)$ species", Radiochim. Acta, 89, 511-518 (2001). 

  8. J.Y. Lee and J.I. Yun, "Formation of ternary $ CaUO_2(CO_3){_3}^{2-}$ and $Ca_2UO_2(CO_3)_3(aq)$ complexes under neutral to weakly alkaline conditions", Dalton Trans., 42, 9862-9869 (2013). 

  9. M.H. Baik, E.C. Jung, and J. Jeong, "Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS", J. Radioanal. Nucl. Chem., 305, 589-598 (2015). 

  10. J.K. Lee, M.H. Baik, and J. Jeong, "Development of Sorption Database (KAERI-SDB) for the Safety Assessment of Radioactive Waste Disposal", J. Nucl. Fuel Cycle Waste Technol., 11(1), 41-54 (2013). 

  11. A. Kowal-Fouchard, R. Drot, E. Simoni, and J.J. Ehrhardt, "Use of Spectroscopic Techniques for Uranium(VI)/Montmorillonite Interaction Modelling", Environ. Sci. Technol., 38, 1399-1407 (2004). 

  12. R. Drot, J. Roques, and E. Simoni, "Molecular approach of the uranyl/mineral interaction phenomena", C. R. Chimie, 10, 1078-1091 (2007). 

  13. J. Wheeler and J.K. Thomas, "Photochemistry of the Uranyl Ion in Colloidal Silica Solution", J. Phys. Chem. 88, 750-754 (1984). 

  14. H. Moll, G. Geipel, V. Brendler, G. Berhard, and H. Nitsche, "Interaction of uranium(VI) with silicic acid in aqueous solutions studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS)", J. Alloys Compd., 271-273, 765-768 (1998). 

  15. U. Gabriel, L. Charlet, C.W. Schlapfer, J.C. Vial, A. Brachmann, and G. Geipel, "Uranyl Surface Speciation on Silica Particles Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy", J. Colloid Interface Sci., 239, 358-368 (2001). 

  16. C.J. Chisholm-Brause, J.M. Berg, K.M. Little, R.A. Matzner, and D.E. Morris, "Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modelling", J. Colloid Interface Sci., 277, 366-382 (2004). 

  17. P. Trepte, V. Brendler, Supporting Information in A. Krepelova, V. Brendler, S. Sachs, N. Baumann, and G. Bernhard, "U(VI)-Kaolinite Surface Complexation in Absence and Presence of Humic Acid Studied by TRLFS", Environ. Sci. Technol., 41, 6142-6147 (2007). 

  18. G. Othmane, T. Allard, T. Vercouter, G. Morin, M. Fayek, and G. Calas, "Luminescence of uranium-bearing opals: Origin and use as a pH record", Chem. Geol., 423, 1-6 (2016). 

  19. C.J. Chisholm-Brause, J.M. Berg, R.A. Matzner, and D.E. Morris, J. "Uranium(VI) Sorption Complexes on Montmorillonite as a Function of Solution Chemistry", Colloid Interface Sci., 233, 38-49 (2001). 

  20. N. Baumann, V. Brendler, T. Arnold, G. Geipel, and G. Bernhard, "Uranyl sorption onto gibbsite studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS)", J. Colloid Interface Sci., 290, 318-324 (2005). 

  21. T. Arnold, S. Utsunomiya, G. Geipel, R.C. Ewing, N. Baumann, and V. Brendler, "Adsorbed U(VI) Surface Species on Muscovite Identified by Laser Fluorescence Spectroscopy and Transmission Electron Microscopy", Environ. Sci. Technol., 40, 4646-4652 (2006). 

  22. Z. Wang, J.M. Zachara, P.L. Gassman, C. Liu, O. Qafoku, W. Yantasee, and J.G. Catalano, "Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment", Geochim. Cosmochim. Acta, 69, 1391-1403 (2005). 

  23. T. Reich, H. Moll, M.A. Denecke, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N. Kaltsoyannis, N.M. Edelstein, and D.K. Shuh, "Characterization of hydrous uranyl silicate by EXAFS", Radiochim. Acta, 74, 219-223 (1996). 

  24. T. Reich, H. Moll, T. Arnold, M.A. Denecke, C. Hennig, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N.M. Edelstein, and D.K. Shuh, "An EXAFS study of uranium(VI) sorption onto silica gel and ferrihydrite", J. Electron Spectrosc. Relat. Phenom., 96, 237-243 (1998). 

  25. E.R. Sylwester, E.A. Hudson, and P.G. Allen, "The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite", Geochim. Cosmochim. Acta, 64, 2431-2438 (2000). 

  26. M. Walter, T. Arnold, G. Geipel, A. Scheinost, and G. Bernhard, "An EXAFS and TRLFS investigation on uranium(VI) sorption to pristine and leached albite surfaces", J. Colloid Interface Sci., 282, 293-305 (2005). 

  27. M.S. Massey, J.S. Lezama-Pacheco, J.M. Nelson, S. Fendorf, and K. Maher, "Uranium Incorporation into Amorphous Silica", Environ. Sci. Technol., 48, 8636-8644 (2014). 

  28. E.C. Jung, M.H. Baik, H.R. Cho, H.K. Kim, and W. Cha, "Study on the Interaction of U(VI) Species With Natural Organic Matters in KURT Groundwater", J. Nucl. Fuel Cycle Waste Technol., 15(2), 101-116 (2017). 

  29. R. Guilaumont, T. Fanghanel, V. Neck, J. Fuger, D.A. Palmer, I. Grenthe, and M.H. Rand, "Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium", OECD-NEA, Elsevier (2003). 

  30. E.C. Jung, H.R. Cho, H.K. Kim, and W. Cha, "Laser-Based Spectroscopic Studies of Actinide Complexes", in The Heaviest Metals, Science and Technology of the Actinides and Beyond; Edited by W. J. Evans, T. P. Hanusa, published by John Wiley & Sons, Ltd., 209-222 (2019). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로