최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기韓國學校數學會論文集 = Journal of the Korean school mathematics society, v.23 no.1, 2020년, pp.67 - 88
This study analyzed the characteristics of prospective teachers' Horizon Content Knowledge(HCK) related to understandings of an inverse function symbol. This study aimed to deduce implications of developing HCK in terms of the means which would enhance mathematics teachers' professional development....
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
교육부(2015). 수학과 교육과정. 교육부 고시 제 2015-74호 [별책 8] 서울: 저자.
양선아, 이수진(2019). 학교 수학과 대학 수학 사이의 연계성에 대한 중등교사의 전문성 분석-대학 수학에 대한 인식과 대수 영역에 대한 MKT를 중심으로-. 학교수학, 21(2), 419-439.
이준열 외(2017). 고등학교 수학. 서울: 천재교육.
Adler, J., & Davis, Z. (2006). Opening another black box: Researching mathematics for teaching in mathematics teacher education, Journal for Research in Mathematics Education, 37(4), 270-296.
Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407.
Ball, D., & Bass, H. (2009). With an eye on the mathematical horizon: Knowing mathematics for teaching to learners'mathematical futures. Paper presented at the 2009 Curtis Center Mathematics and Teaching Conference, LA: University of California.
Brousseau, G. (1998). Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic Publishers.
Brown, C., & Reynolds, B. (2007). Delineating four conceptions of function: A case of composition and inverse. In T. Lamberg, & L. R. Wiest (Eds.), Proceeding of the 29th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 190-193) NV: University of Nevada.
Cho, Y., & Tee, F. (2018). Complementing mathematics teachers' horizon content knowledge with an elementary-on-advanced aspect. Pedagogical Research, 3(1), 1-11.
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.) Advanced mathematical thinking (pp. 95-123). Dordrecht: Kluwer Academic Publishers.
Figueiras, L., Ribeiro, M., Carrillo, J., Fernandez, S., & Deuloffeu, J. (2011). Teachers' advanced mathematical knowledge for solving mathematics teaching challenges: A response to Zazkis and Mamolo. For the Learning of Mathematics, 31(3), 26-28.
Guberman, R., & Gorev, D. (2015). Knowledge concerning the mathematical horizon: A close view. Mathematics Education Research Journal, 27, 165-182.
Harel, G., & Kaput, J. (1991). The role of conceptual entities and their symbols in building advanced mathematical concepts. In D. Tall (Ed.) Advanced mathematical thinking (pp. 82-94). Dordrecht: Kluwer Academic Publishers.
Harel, G. (2013). Intellectual need. In K. Leatham (Ed.) Vital direction for mathematics education research (pp. 119-152). NY: Springer.
Hodgen, J. (2011). Knowing and identity: A situated theory of mathematics knowledge in teaching. In T. Rowland & K. Ruthven (Eds.) Mathematical knowledge in teaching (pp. 27-42). NY: Springer.
Jakobsen, A., Thames, M. H., Ribeiro, C. M. (2013). Delineating issues related to Horizon Content Knowledge for mathematics teaching. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of CERME 8 (pp. 3125-3134). Turkey: ERME.
Klein, F. (1932). Elementary mathematics from an advanced standpoint: Arithmetic, algebra, analysis (Vol. 1. E. R. Hedrick & C. A. Noble trans.) NY: Macmillan. (Original work published 1924).
Ma, L. (1996). Profound understanding of fundamental mathematics: What is it, why is it important, and how is it attained? Unpublished doctoral dissertation, Stanford: Stanford University.
Mamolo, A. (2010). Polysemy of symbols: Signs of ambiguity. The Montana Mathematics Enthusiast, 7(2), 247-262.
Mellone, M., Jakobsen, A., & Ribeiro, C. M. (2015). Mathematics educator transformation(s) by reflecting on students' non-standard reasoning. In K. Krainer & N. Vondrova (Eds.), Proceedings of CERME 9 (pp. 2874-2880). Prague: ERME
Montes, M., Riberiro, M., Carrillo, J., & Kilpatrick, J. (2016). Understanding mathematics from a higher standpoint as a teacher: An unpacked example. In Csikos, C., Rausch, A., & Szitanyi, J. (Eds.), Proceedings of the 40th Conference of the International Group of the Psychology of Mathematics Education, Vol. 3, (pp. 351-322). Hungary: PME.
Mosvold, R., & Fauskanger, J. (2014). Teachers' Beliefs about Mathematical Horizon Content Kno wledge. International Journal for Mathematics Teaching and Learning, 1-16.
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1-22.
Tall, D. (1991). The psychology of advanced mathematical thinking. In D. Tall (Ed.) Advanced mathematical thinking (pp. 3-21). Dordrecht: Kluwer Academic Publishers.
Tall, D. (2013). How humans learn to think mathematically : Exploring the three worlds of mathematics. NY: Cambridge University Press.
Turner, F. & Rowland, T. (2011). The knowledge Quartet as an organising framework for developing and deepening teachers' mathematics knowledge. In T. Rowland & K. Ruthven (Eds.) Mathematical knowledge in teaching (pp. 195-212). NY: Springer.
Vale, C., McAndrew, A, & Krishnan, S. (2011). Connecting with the horizon: Developing teachers' appreciation of mathematical structure. Journal of Mathematics Teacher Education, 14, 193-212.
Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.) Advanced mathematical thinking (pp. 65-81). Dordrecht: Kluwer Academic Publishers.
Wasserman, N., Weber, K., Villanueva, M., & Mejia-Ramos, J. P. (2018). Mathematics teachers' view about the limited utility of real analysis: A transport model hypothesis. The Journal of Mathematics Behavior, 50, 74-89.
Watson, J., Beswick, K., & Brown, N. (2006). Teachers' knowledge of their students as learners and how to intervene. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning spaces: Proceedings of the 29th annual conference of the Mathematics Education Research Group of Australasia (pp. 551-558). Adelaide: MERGA.
William, B. (2010). How mathematicians think : Using ambiguity, contradiction, and paradox to create mathematics. Princeton: Princeton University Press.
Zazkis, R., & Leizin, R. (2010). Advanced mathematical knowledge in teaching practice: Perceptions of secondary mathematics teachers. Mathematical Thinking and Learning, 12, 263-281.
Zazkis, R., & Mamolo, A. (2011). Reconceptualizing knowledge at the mathematical horizon. For the Learning of Mathematics, 31(2), 8-13.
Zazkis, R., & Zazkis, D. (2014). Script writing in the mathematics classroom: Imaginary conversations on the structure of numbers. Research in Mathematics Education, 16(1) 54-70.
Zazkis, R., & Marmur, O. (2018). Groups to the rescue: Responding to situations of contingency. In N. H. Wasserman (Ed.), Connecting abstract algebra to secondary mathematics for secondary mathematics teachers, (pp. 363-387) NY: Springer.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.