$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

이종 폴리머재료 어닐링을 이용한 유연저항센서 FDM 3D프린팅 제작실험
Manufacturing Experiments using FDM 3D-printed Flexible Resistance Sensors with Heterogeneous Polymer Material Annealing 원문보기

한국기계가공학회지 = Journal of the Korean Society of Manufacturing Process Engineers, v.19 no.1, 2020년, pp.81 - 88  

이선곤 (인하대학교 기계공학과) ,  오영찬 (인하대학교 기계공학과) ,  김주형 (인하대학교 기계공학과)

Abstract AI-Helper 아이콘AI-Helper

In this paper, the performances of the electrical characteristics of the Fused Deposition Modeling (FDM) 3D-printed flexible resistance sensor was evaluated. The FDM 3D printing flexible resistive sensor is composed of flexible-material thermoplastic polyurethane and a conductive PLA (carbon black c...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • These existing materials should withstand various production processes that are difficult in terms of flexible device implementation and have the disadvantage that the device shape cannot be freely implemented. Hence, the study aims to produce a flexible resistance sensor (FRS) along with numerous other flexible devices using the fused deposition modeling (FDM) three-dimensional (3D) printing technique which affords a simple production process. The characteristics of the obtained sensor will also be evaluated.
  • Agilent) with 10 iterations of 15, 20, and 25% increase and returning-back in displacement. In addition, the change in electrical characteristics was measured using the same method after annealing the 3D printing sensor in a constant temperature oven in order to provide a comparative analysis of the characteristics before and after annealing.
  • In the present study, the 3D printed FRS was produced using thermoplastic polyurethane (TPU) to provide flexibility along with the conductive poly lactic acid (PLA). In order to optimize the process and enhance the electrical conductance of the 3D printed sensor, studies were also performed on the changes in electric resistance with increasing and decreasing displacement of the sensor before and after heat treatment (annealing). This study is expected to contribute to the expansion of FDM 3D printing into the electric and electronic application fields such as wearable and flexible devices.
  • To determine the annealing temperature for the FRS, the glass transition temperature (Tg) and crystallization temperature of the conductive PLA filament were measured using a differential scanning calorimeter (DSC 200F3, NETZSCH). The results of these measurements are presented in Fig.
  • To measure the change in electric resistance according to the displacement of the flexible resistance sensor, the sensor was fixed to the single-axis actuator and 15, 20, and 25% tension was applied, held steady for one second, then allowed to return to the relaxed condition. This procedure was conducted 10 times and the change in electric resistance was measured via the power line communication (PLC) control.
  • To measure the electrical conductance according to the changing displacement of the 3D printing FRS, both ends of the sensor were fixed using a single axis actuator and the change in electric resistance was measured in real-time using a digital multimeter (34410a. Agilent) with 10 iterations of 15, 20, and 25% increase and returning-back in displacement. In addition, the change in electrical characteristics was measured using the same method after annealing the 3D printing sensor in a constant temperature oven in order to provide a comparative analysis of the characteristics before and after annealing.
본문요약 정보가 도움이 되었나요?

참고문헌 (11)

  1. Kim, C., Lee, T. K., Kim, T. S., "Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging," Journal of the Microelectronics and Packaging Society, Vol. 23, No. 2, pp 19-28, 2016. 

  2. Brand, J. van, den., Kok, M, de., Koetse, M., Cauwe, M., Verplancke, R., Bossuyt, F., Jablonski, M., Vanfleteren, J., "Flexible and Stretchable Electronics for Wearable Health Devices," ELSEVIER, Vol. 113, pp. 116-120, 2015. 

  3. Choi, J. W., Kim, H. C., "3D Printing Technologies-A Review," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 14, No. 3, pp. 1-8, 2015. 

  4. Jang, J., Cho, D. W., "A Review of the Fabrication of Soft Structures with Three-dimensional Printing Technology," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 14, No. 6, pp. 142-148, 2015. 

  5. Kim, D. B., Lee, G. T., Lee, I. H., Cho, H. Y., "Finite Element Analysis for Fracture Criterion of PolyJet Materials," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 14, No. 4, pp. 134-139, 2015. 

  6. Lee, S. K., Kim, Y. R., Kim, S. H., Kim, J. H., "Investigation of the Internal Stress Relaxation in FDM 3D Printing : Annealing Conditions," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 17, No. 4, pp. 130-136, 2018. 

  7. Jackson Jr, W. J., & Caldwell, J. R., "Antiplasticization. II. Characteristics of antiplasticizers," Journal of Applied Polymer, Vol 11, No. 2, pp 211-226, 1967. 

  8. Lee, S. K., Kim, Y. R., Park, J. H., Kim, J. H., "Study on Electrical Characteristics of FDM Conductive 3D Printing According to Annealing Conditions," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 17, No. 6, pp. 55-60, 2018. 

  9. Hashima, K., Nishitsuji, S., Inoue, T., "Structure - properties of super-tough PLA alloy with excellent heat resistance," Polymer, Vol. 51, No. 17, pp. 3934-3939, 2010. 

  10. Postiglione, G., Natale, G., Griffini, G., Levi, M., Turri, S., "Conductive 3D Microstructures by Direct 3D Printing of polymer/carbon Nanotube Nanocomposites via Liquid Deposition Modeling," ELSEVIER, Vol. 76, pp. 110-114, 2015. 

  11. Seol, K. S., Shin, B. C., Zhang, S. U., "Fatigue Test of 3D-printed ABS Parts Fabricated by Fused Deposition Modeling," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 17, No. 3, pp. 93-101, 2018. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로