$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

FDM 3D프린팅 기반 유연굽힘센서
Fused Deposition Modeling 3D Printing-based Flexible Bending Sensor 원문보기

한국기계가공학회지 = Journal of the Korean Society of Manufacturing Process Engineers, v.19 no.1, 2020년, pp.63 - 71  

이선곤 (인하대학교 기계공학과) ,  오영찬 (인하대학교 기계공학과) ,  김주형 (인하대학교 기계공학과)

Abstract AI-Helper 아이콘AI-Helper

Recently, to improve convenience, flexible electronics are quickly being developed for a number of application areas. Flexible electronic devices comprise characters such as being bendable, stretchable, foldable, and wearable. Effectively manufacturing flexible electronic devices requires high effic...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In addition, the change in electrical characteristics was measured using the same method after annealing of 3D printing FBS in a constant temperature oven, allowing comparative analysis o the characteristics before and after annealing.
  • The glass transition temperature (Tg) and crystallization temperature of the conductive PLA filament, which was used as an electrode of the bending sensor, were measured using a differential scanning calorimeter (DSC) to determine the appropriate temperature for annealing of the FBS. The measurement results were: PLA and carbon block’s Tg were approximately 62℃ and 880℃, respectively, and the PLA crystallization temperature was approximately 120℃.
  • This study manufactured an FBS using FDM 3D printing and verified its applicability through experiments on changes in electric resistance against bending displacement. In addition, this study found that the electrode stability according to the 3D printing bending sensor design acted as an important variable to sensor sensing capability.
  • This study produces a flexible bending sensor (FBS) that can be produced easily and facilitate intuitive judgment, using FDM 3D printing, and its performance is discussed. This will contribute to the promotion of FDM 3D printing use, departing from the simple structure production by expanding the utilization field of FDM 3D printing into various application areas including electronics and controls.
  • However, these printing processes have the following drawbacks: complex processes that are not yet familiar to the public, high production cost, and limitation of size and shape. Thus, this study aims to produce an FED with a simple process and low production cost using a fused deposition modeling (FDM) three-dimensional (3D) printer, which is widely distributed to the public, and analyze its characteristics.
  • To evaluate the characteristics according to the displacement of 3D printing FBS, the change in electric resistance was measured in real time while applying 10, 20, and 30% increase in bending displacement followed by 5-sec. stay and returning-back using a programmable logic controller (PLC), which was conducted five times, respectively, after fixing the bending sensor at the single-axis actuator.

대상 데이터

  • Thus, the annealing temperature was set to 120℃. The measurement equipment used was DSC200F3 manufactured by NETZSCH[7-8] .
본문요약 정보가 도움이 되었나요?

참고문헌 (10)

  1. Pal, R. K., Farghaly, A. A., Collinson, M. M., Kundu, S. C., Yadavalli, V. K., "Photolithographic Micropatterning of Conducting Polymers on Flexible Silk Matrices," Advanced Materials, Vol. 28, No. 7, pp. 107-116, 2015. 

  2. Ana, M., Gemma G., Rosa, V., and Javier del Campo, F., "Inkjet-printed Electrochemical Sensors," Current Opinion in Electrochemistry, Vol 3, No. 1, pp. 29-39, 2017. 

  3. Bariya, M., Shahpar, Z., Park, H., Sun, J., Jung, Y., Gao, W., Nyein, H. Y. Y., Liaw, T. S., Tai, L-C., Ngo, Q. P., Chao, M., Zhao, Y., Hettick, M., Cho, G., Javey, A., "Roll-to-Roll Gravure Printed Electrochemical Sensors for Wearable and Medical Devices" American Chemical Society, Vol. 12, No. 7, pp.6978-6987, 2018. 

  4. Bhat, K. S., Ahmad, R., Yoo, J-Y. Hahn, Y. B., "Nozzle-jet printed flexible field-effect transistor biosensor for high performance glucose detection," Journal of Colloid and Interface Science, Vol. 506, pp. 188-196, 2017. 

  5. Nomura, K-I., Kaji, R., Iwata, S., Otao, S., Imawaka, N., Yoshino, K., Mitsui, R., Sato, J., Takahashi, S., Nakajima, S-I., and Ushijima, H., "A flexible proximity sensor formed by duplex screen/screen-offset printing and its application to non-contact detection of human breathing," Jounal of nature, Vol. 6, pp. 6-10, 2016. 

  6. Jackson Jr, W. J., Caldwell, J., R., "Antiplasticization . II. Characteristics of antiplasticizers," Journal of Applied Polymer, Vol 11, Issue 2, pp 211-226, 1967. 

  7. Lee, S. K., Kim, Y. R., Park, J. H., Kim, J, H., "Study on Electrical Characteristics of FDM Conductive 3D Printing According to Annealing Conditions", Journal of the Korean Society of Manufacturing Process Engineers, Vol. 17, No. 6, pp. 55-60, 2018. 

  8. Hashima, K., Nishitsuji, S., Inoue, T., "Structure-properties of super-tough PLA alloy with excellent heat resistance," Polymer, Vol. 51, No. 17, pp. 3934-3939, 2010. 

  9. Postiglione, G., Natale, G., Griffini, G., Levi, M., Turri, S., "Conductive 3D Microstructures by Direct 3D Printing of Polymer/carbon Nanotube Nanocomposites via Liquid deposition modeling," Composites Part A, Vol. 76, pp. 110-114, 2015. 

  10. Seol, K-S., Shin, B-C., Zhang, S-U., "Fatigue Test of 3D-printed ABS Parts Fabricated by Fused Deposition Modeling," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 17, No. 3, pp. 93-101, 2018. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로