$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Dynamic Changes in the Bridging Collaterals of the Basal Ganglia Circuitry Control Stress-Related Behaviors in Mice 원문보기

Molecules and cells, v.43 no.4, 2020년, pp.360 - 372  

Lee, Young (Department of Life Sciences, Korea University) ,  Han, Na-Eun (Department of Life Sciences, Korea University) ,  Kim, Wonju (Department of Life Sciences, Korea University) ,  Kim, Jae Gon (Department of Life Sciences, Korea University) ,  Lee, In Bum (Department of Life Sciences, Korea University) ,  Choi, Su Jeong (Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry) ,  Chun, Heejung (Cognitive Glioscience Group, Center for Cognition and Sociality, Institute for Basic Science (IBS)) ,  Seo, Misun (Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST)) ,  Lee, C. Justin (Cognitive Glioscience Group, Center for Cognition and Sociality, Institute for Basic Science (IBS)) ,  Koh, Hae-Young (Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST)) ,  Kim, Joung-Hun (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ,  Baik, Ja-Hyun (Department of Life Sciences, Korea University) ,  Bear, Mark F. (The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts) ,  Choi, Se-Young ,  Yoon, Bong-June

Abstract AI-Helper 아이콘AI-Helper

The basal ganglia network has been implicated in the control of adaptive behavior, possibly by integrating motor learning and motivational processes. Both positive and negative reinforcement appear to shape our behavioral adaptation by modulating the function of the basal ganglia. Here, we examined ...

Keyword

표/그림 (5)

참고문헌 (50)

  1. Abdi A. Mallet N. Mohamed F.Y. Sharott A. Dodson P.D. Nakamura K.C. Suri S. Avery S.V. Larvin J.T. Garas F.N. 2015 Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus J. Neurosci. 35 6667 6688 10.1523/JNEUROSCI.4662-14.2015 25926446 

  2. Albin R.L. Young A.B. Penney J.B. 1989 The functional anatomy of basal ganglia disorders Trends Neurosci. 12 366 375 10.1016/0166-2236(89)90074-X 2479133 

  3. Alexander G.E. DeLong M.R. Strick P.L. 1986 Parallel organization of functionally segregated circuits linking basal ganglia and cortex Annu. Rev. Neurosci. 9 357 381 10.1146/annurev.ne.09.030186.002041 3085570 

  4. Bateup H.S. Santini E. Shen W. Birnbaum S. Valjent E. Surmeier D.J. Fisone G. Nestler E.J. Greengard P. 2010 Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors Proc. Natl. Acad. Sci. U. S. A. 107 14845 14850 10.1073/pnas.1009874107 20682746 

  5. Bhatia K.P. Marsden C.D. 1994 The behavioural and motor consequences of focal lesions of the basal ganglia in man Brain 117 859 876 10.1093/brain/117.4.859 7922471 

  6. Carretie L. Rios M. de la Gandara B.S. Tapia M. Albert J. Lopez-Martin S. Alvarez-Linera J. 2009 The striatum beyond reward: caudate responds intensely to unpleasant pictures Neuroscience 164 1615 1622 10.1016/j.neuroscience.2009.09.031 19778586 

  7. Carvalho Poyraz F. Holzner E. Bailey M.R. Meszaros J. Kenney L. Kheirbek M.A. Balsam P.D. Kellendonk C. 2016 Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action J. Neurosci. 36 5988 6001 10.1523/JNEUROSCI.0444-16.2016 27251620 

  8. Cazorla M. de Carvalho F.D. Chohan M.O. Shegda M. Chuhma N. Rayport S. Ahmari S.E. Moore H. Kellendonk C. 2014 Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry Neuron 81 153 164 10.1016/j.neuron.2013.10.041 24411738 

  9. Cazorla M. Shegda M. Ramesh B. Harrison N.L. Kellendonk C. 2012 Striatal D2 receptors regulate dendritic morphology of medium spiny neurons via Kir2 channels J. Neurosci. 32 2398 2409 10.1523/JNEUROSCI.6056-11.2012 22396414 

  10. Choi T.Y. Lee S.H. Kim Y.J. Bae J.R. Lee K.M. Jo Y. Kim S.J. Lee A.R. Choi S. Choi L.M. 2018 Cereblon maintains synaptic and cognitive function by regulating BK channel J. Neurosci. 38 3571 3583 10.1523/JNEUROSCI.2081-17.2018 29530986 

  11. Cui G.H. Jun S.B. Jin X. Pham M.D. Vogel S.S. Lovinger D.M. Costa R.M. 2013 Concurrent activation of striatal direct and indirect pathways during action initiation Nature 494 238 242 10.1038/nature11846 23354054 

  12. Deacon R.M. 2006 Digging and marble burying in mice: simple methods for in vivo identification of biological impacts Nat. Protoc. 1 122 124 10.1038/nprot.2006.20 17406223 

  13. DeLong M.R. 1990 Primate models of movement disorders of basal ganglia origin Trends Neurosci. 13 281 285 10.1016/0166-2236(90)90110-V 1695404 

  14. Dolan R.J. Dayan P. 2013 Goals and habits in the brain Neuron 80 312 325 10.1016/j.neuron.2013.09.007 24139036 

  15. Ferguson S.M. Eskenazi D. Ishikawa M. Wanat M.J. Phillips P.E. Dong Y. Roth B.L. Neumaier J.F. 2011 Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization Nat. Neurosci. 14 22 24 10.1038/nn.2703 21131952 

  16. Fujiyama F. Sohn J. Nakano T. Furuta T. Nakamura K.C. Matsuda W. Kaneko T. 2011 Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector Eur. J. Neurosci. 33 668 677 10.1111/j.1460-9568.2010.07564.x 21314848 

  17. Gerfen C.R. Engber T.M. Mahan L.C. Susel Z. Chsase T.N. Monsma F.J. Jr Sibley D.R. 1990 D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons Science 250 1429 1432 10.1126/science.2147780 2147780 

  18. Graybiel A.M. 2000 The basal ganglia Curr. Biol. 10 R509 R511 10.1016/S0960-9822(00)00593-5 10899013 

  19. Guez-Barber D. Fanous S. Harvey B.K. Zhang Y. Lehrmann E. Becker K.G. Picciotto M.R. Hope B.T. 2012 FACS purification of immunolabeled cell types from adult rat brain J. Neurosci. Methods 203 10 18 10.1016/j.jneumeth.2011.08.045 21911005 

  20. Hikida T. Kimura K. Wada N. Funabiki K. Nakanishi S. 2010 Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior Neuron 66 896 907 10.1016/j.neuron.2010.05.011 20620875 

  21. Hume R.I. Dingledine R. Heinemann S.F. 1991 Identification of a site in glutamate receptor subunits that controls calcium permeability Science 253 1028 1031 10.1126/science.1653450 1653450 

  22. Jin X. Tecuapetla F. Costa R.M. 2014 Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences Nat. Neurosci. 17 423 430 10.1038/nn.3632 24464039 

  23. Kawaguchi Y. Wilson C.J. Emson P.C. 1990 Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin J. Neurosci. 10 3421 3438 10.1523/JNEUROSCI.10-10-03421.1990 1698947 

  24. Kim H.F. Amita H. Hikosaka O. 2017a Indirect pathway of caudal basal ganglia for rejection of valueless visual objects Neuron 94 920 930 e3 10.1016/j.neuron.2017.04.033 28521141 

  25. Kim H.J. Lee J.H. Yun K. Kim J.H. 2017b Alterations in striatal circuits underlying addiction-like behaviors Mol. Cells 40 379 385 10.14348/molcells.2017.0088 28724279 

  26. Kim J. Lee S. Kang S. Jeon T.I. Kang M.J. Lee T.H. Kim Y.S. Kim K.S. Im H.I. Moon C. 2018 Regulator of G-protein signaling 4 (RGS4) controls morphine reward by glutamate receptor activation in the nucleus accumbens of mouse brain Mol. Cells 41 454 464 10.14348/molcells.2018.0023 29754475 

  27. Kim W. Im M.J. Park C.H. Lee C.J. Choi S. Yoon B.J. 2013 Remodeling of the dendritic structure of the striatal medium spiny neurons accompanies behavioral recovery in a mouse model of Parkinson's disease Neurosci. Lett Pt B 95 100 10.1016/j.neulet.2013.10.049 24176882 

  28. Kozorovitskiy Y. Saunders A. Johnson C.A. Lowell B.B. Sabatini B.L. 2012 Recurrent network activity drives striatal synaptogenesis Nature 485 646 650 10.1038/nature11052 22660328 

  29. Kravitz A.V. Freeze B.S. Parker P.R.L. Kay K. Thwin M.T. Deisseroth K. Kreitzer A.C. 2010 Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry Nature 466 622 626 10.1038/nature09159 20613723 

  30. Kravitz A.V. Tye L.D. Kreitzer A.C. 2012 Distinct roles for direct and indirect pathway striatal neurons in reinforcement Nat. Neurosci. 15 816 818 10.1038/nn.3100 22544310 

  31. Kreitzer A.C. Malenka R.C. 2007 Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models Nature 445 643 647 10.1038/nature05506 17287809 

  32. Lambeth C.R. White L.J. Johnston R.E. de Silva A.M. 2005 Flow cytometry-based assay for titrating dengue virus J. Clin. Microbiol. 43 3267 3272 10.1128/JCM.43.7.3267-3272.2005 16000446 

  33. LeDoux J. 2012 Rethinking the emotional brain Neuron 73 653 676 10.1016/j.neuron.2012.02.004 22365542 

  34. Lee S.H. Liu L.D. Wang Y.T. Sheng M. 2002 Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD Neuron 36 661 674 10.1016/S0896-6273(02)01024-3 12441055 

  35. Lee Y. Lee H. Kim H.W. Yoon B.J. 2015 Altered trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) in the striatum leads to behavioral changes in emotional responses Neurosci. Lett. 584 103 108 10.1016/j.neulet.2014.10.023 25459286 

  36. Liu S.J. Zukin R.S. 2007 Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death Trends Neurosci. 30 126 134 10.1016/j.tins.2007.01.006 17275103 

  37. Lobo M.K. Covington H.E., 3rd. Chaudhury D. Friedman A.K. Sun H. Damez-Werno D. Dietz D.M. Zaman S. Koo J.W. Kennedy P.J. 2010 Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward Science 330 385 390 10.1126/science.1188472 20947769 

  38. Manvich D.F. Webster K.A. Foster S.L. Farrell M.S. Ritchie J.C. Porter J.H. Weinshenker D. 2018 The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice Sci. Rep. 8 3840 10.1038/s41598-018-22116-z 29497149 

  39. Mink J.W. 1996 The basal ganglia: focused selection and inhibition of competing motor programs Prog. Neurobiol. 50 381 425 10.1016/S0301-0082(96)00042-1 9004351 

  40. Rodriguez A. Ehlenberger D.B. Dickstein D.L. Hof P.R. Wearne S.L. 2008 Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images PLoS One 3 e1997 10.1371/journal.pone.0001997 18431482 

  41. Roseberry T.K. Lee A.M. Lalive A.L. Wilbrecht L. Bonci A. Kreitzer A.C. 2016 Cell-type-specific control of brainstem locomotor circuits by basal ganglia Cell 164 526 537 10.1016/j.cell.2015.12.037 26824660 

  42. Shen W.X. Flajolet M. Greengard P. Surmeier D.J. 2008 Dichotomous dopaminergic control of striatal synaptic plasticity Science 321 848 851 10.1126/science.1160575 18687967 

  43. Stroobants S. Gantois I. Pooters T. D'Hooge R. 2013 Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance Behav. Brain Res. 241 32 37 10.1016/j.bbr.2012.11.034 23219967 

  44. Taverna S. Ilijic E. Surmeier D.J. 2008 Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease J. Neurosci. 28 5504 5512 10.1523/JNEUROSCI.5493-07.2008 18495884 

  45. Tecuapetla F. Jin X. Lima S.Q. Costa R.M. 2016 Complementary contributions of striatal projection pathways to action initiation and execution Cell 166 703 715 10.1016/j.cell.2016.06.032 27453468 

  46. Tecuapetla F. Koos T. Tepper J.M. Kabbani N. Yeckel M.F. 2009 Differential dopaminergic modulation of neostriatal synaptic connections of striatopallidal axon collaterals J. Neurosci. 29 8977 8990 10.1523/JNEUROSCI.6145-08.2009 19605635 

  47. Tecuapetla F. Matias S. Dugue G.P. Mainen Z.F. Costa R.M. 2014 Balanced activity in basal ganglia projection pathways is critical for contraversive movements Nat. Commun. 5 4315 10.1038/ncomms5315 25002180 

  48. Wu Y. Richard S. Parent A. 2000 The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat Neurosci. Res. 38 49 62 10.1016/S0168-0102(00)00140-1 10997578 

  49. Yin H.H. Mulcare S.P. Hilario M.R.F. Clouse E. Holloway T. Davis M.I. Hansson A.C. Lovinger D.M. Costa R.M. 2009 Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill Nat. Neurosci. 12 333 341 10.1038/nn.2261 19198605 

  50. Yoon B.J. Smith G.B. Heynen A.J. Neve R.L. Bear M.F. 2009 Essential role for a long-term depression mechanism in ocular dominance plasticity Proc. Natl. Acad. Sci. U. S. A. 106 9860 9865 10.1073/pnas.0901305106 19470483 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로