$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

동아시아 이상기후 감시 서비스를 위한 지면모형 기반 준실시간 토양수분지수평가
Evaluation of near-realtime weekly root-zone Soil Moisture Index (SMI) for the extreme climate monitoring web-service across East Asia 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.53 no.6, 2020년, pp.409 - 416  

전종안 (APEC 기후센터 기후사업본부 기후분석과) ,  이은정 (APEC 기후센터 기후사업본부 기후분석과) ,  김대하 (APEC 기후센터 기후사업본부 기후분석과) ,  김선태 (APEC 기후센터 기후사업본부 기후분석과) ,  이우섭 (APEC 기후센터 기후사업본부 기후분석과)

초록
AI-Helper 아이콘AI-Helper

최근 증가하고 있는 이상기후현상으로 인한 사회·경제적 피해를 줄이기 위해 이상기후 감시가 필수적이다. 이 연구의 목적은 Noah 3.3 지면모형으로 추정한 토양수분자료를 활용하여 준실시간 주간 근역층 토양수분지수(Soil Moisture Index, SMI)를 산정하는데 있다. 동아시아영역(15-60°N, 70-150°E)에 대해 Noah 3.3 지면모형의 적용성을 평가하기 위해 양쯔강유역을 선정하였으며, 해당 유역에서 증발산현열FluxNet, FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, Generalized Complementary Relationship (GCR)자료를 이용하여 비교·평가하였다. 양쯔강 유역에서 Noah 지면모형으로 추정한 증발산은 FluxNet, FluxCom, GLEAM, ERA-5, GCR에 의한 증발산과 0.96이상의 매우 높은 결정계수의 값을 보였으며, 현열의 경우에는 FluxNet 현열 자료와 0.71의 결정계수로 증발산 보다 다소 낮은 값을 보였다. 주간 근역층 SMI 시계열로부터 2019년 7월부터 10월까지 중국의 동부지역에서 극한가뭄(Extreme drought)이 확장되는 현상이 관측되었다. 월별 극한가뭄 발생일수의 트렌드 분석결과, 우리나라의 경우 봄철에는 극한가뭄이 지난 20년 동안 대체로 감소하는 경향이 나타났으나, 가을철에는 한반도 전역에 걸쳐 증가하는 경향이 나타났다. 이 연구가 가뭄의 시·공간적 지속성 및 확장성과 최근 가뭄발생의 경향성 등을 종합적으로 분석하고 판단하여, 가뭄으로 인한 사회·경제적 피해를 줄이기 위한 적절한 대책 마련에 활용성이 클 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

An extreme climate monitoring is essential to the reduction of socioeconomic damages from extreme events. The objective of this study was to produce the near-realtime weekly root-zone Soil Moisture Index (SMI) on the basis of soil moisture using the Noah 3.3 Land Surface Model (LSM) for potentially ...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 이 연구의 목적은 동아시아 가뭄을 준실시간 감시하기 위하여 주간 근역층 토양수분지수(Soil Moisture Index, SMI)를 산정하는데 있으며, 이를 위하여 증발산과 현열을 이용하여 Noah 지면모형을 평가하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
가뭄을 보통 어떻게 구분하는가? 가뭄은 보통 기상학적 가뭄, 농업적 가뭄, 수문학적 가뭄, 사회 · 경제적 가뭄으로 구분된다(Dai, 2010). 가뭄현상을 감 시기 위해 목적하는 가뭄 분류 별로 다양한 가뭄지수가 개발되 었다.
토양수분자료를 활용하여 만든 여러 가뭄 지수들은 어디에 주로 사용되는가? 가뭄현상을 감 시기 위해 목적하는 가뭄 분류 별로 다양한 가뭄지수가 개발되 었다. 일반적으로 토양수분을 기반으로 한 가뭄지수는 농업적 가뭄 및 수문학적 가뭄에 주로 사용된다. 예를 들면, Woli et al.
APCC에서 하는 일은? do?lang=ko)를 운영하고 있다. 현재 APCC는 월간 감시정보와 주간 감시정보로 나누어 이상기온 및 강수, 가뭄 등을 제공 하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (26)

  1. Baier, W. (1969). "Concepts of soil moisture availability and their effect on soil moisture estimates from a meteorological budget." Agricultural Meteorology, Vol. 6, pp. 165-178. 

  2. Bouchet, R.J. (1963). "Evapotranspiration reelle et potentielle, signification climatique." International Association of Scientific Hydrology Publication, Vol. 62, pp. 134-142. 

  3. Chun, J.A., Kim, S.T., Lee, W.-S., and Kim, D. (2020). "Assessment of Noah land surface model-based soil moisture using GRACEobserved TWSA and TWSC." Journal of Korea Water Resources Association (forthcoming) (in Korean with English abstract), Vol. 53, No. 4, pp. 285-291 

  4. Chun, J.A., and Kim, D. (2019). "A drought assessment using the generalized complementary principle of evapotranspiration." Journal of Korea Water Resources Association, Vol. 52, No. 5, pp. 325-335. (in Korean with English abstract) 

  5. Copernicus Climate Change Service (C3S). (2017). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), assessed 5 January 2020, . 

  6. Dai, A. (2010). "Drought under global warming: a review." Wiley Interdisciplinary Reviews: Climate Change, Vol. 2, pp. 45-65. 

  7. Ek, M.B., Mitchell, K.E., Lin, Y., Rodgers, E., Grunman, P., Koren, V., Gayno, G., and Tarpley, J.D. (2003). "Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model." Journal of Geophysical Research, Vol. 108, No. D22, p. 8851. 

  8. Esch, S., Korres, W., Rechenau, T.G., and Schneider, K. (2018). "Soil moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas." Journal of Applied Remote Sensing, Vol. 12, No. 2, 022206. 

  9. Gutman, G., and Ignatov, A. (1997). "The derivation of green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models." International Journal of Remote Sensing, Vol. 19, No. 8, pp. 1533-1543. 

  10. Hogg, E.H., Barr, A.G., and Black, T.A. (2013). "A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior." Agricultural and Forest Meteorology, Vol. 178-179, pp. 173-182. 

  11. Hunt, E.D., Hubbard, K.G., Wilhite, D.A., Arkebauer, T.J., and Dutcher, A.L. (2009). "The development and evaluation of a soil moisture index." International Journal of Climatology, Vol. 29, pp. 747-759. 

  12. Jung, M., Reichstein, M., Margolis, H.A., Cescatti, A., Richardson, A.D., Arain, M.A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B.E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E.J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C. (2011). "Global patterns of land­atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations." Journal of Geophysical Research, Vol. 116, G00J07, doi : 10.1029/2010JG001566. 

  13. Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camp-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M. (2019). "The FLUXCOM ensemble of global land-atmosphere energy fluxes." Scientific Data, Vol. 6, No. 74, doi: 10.1038/s41597-019-0076-8. 

  14. Kim, D., Lee, W.-S., Kim, S.-T., and Chun, J.A. (2019). "Historical drought assessment over the contiguous United States using the generalized complementary principle of evapotranspiration." Water Resources Research, Vol. 55, pp. 6244-6267, doi: 10.1029/2019WR024991. 

  15. Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernandez-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C. (2017). "GLEAM v3: Satellite-based land evaporation and root-zone soil moisture." Geoscientific Model Development, Vol. 10, pp. 1903-1925. 

  16. Martnez-Fernandez, J., Conzalez-Zamora, A., Sanchez, N., and Cumuzzio, A. (2015). "A soil water based index as a suitable agricultural drought indicator." Journal of Hydrology, Vol. 522, pp. 265-273. 

  17. Martnez-Fernandez, J., Conzalez-Zamora, A., Sanchez, N., Cumuzzio, A., and Herrero-Jimenez, C.M. (2016). "Satellite oil moisture for agricultural dourght monitoring: Assessment of the SMOS derived Soil Water Deficit Index." Remote Sensing of Environment, Vol. 177, pp. 277-286. 

  18. Miralles, D. G., Holmes, T.R.H., de Jeu, R.A.M., Gash, J. H., Meesters, A.G.C.A., and Dolman, A.J. (2011). "Global land-surface evaporation estimated from satellite-based observations." Hydrology and Earth System Sciences, Vol. 15, pp. 453-469. 

  19. Mishra, A.K., Ines, A.V.M., Das, N.N., Khedun, C.P., Singh, V.P., Sivakumar, B., and Hansen, J.W. (2015). "Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study." Journal of Hydrology, Vol. 526. pp. 15-29. 

  20. Narasimhan, B., and Srinivasan, R. (2005). "Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring." Agricultural and Forest Meteorology, Vol. 133, pp. 69-88. 

  21. Perkins, S.E., Argueso, D., and White, C.J. (2015). "Relationships between climate variability, soil moisture, and Australian heatwaves." Journal of Geophysical Research: Atmospheres, Vol. 120, pp. 8144-8164, doi: 10.1002/2015JD023592. 

  22. Priestley, C.H., and Taylor, R.J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. 

  23. Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., and Toll, D. (2004). "The global land data assimilation system." Bulletin of the American Meteorological Society, Vol. 85, No. 3, pp. 381-394. 

  24. Sridhar, V., Hubbard, K.G., You, J., and Hunt, E.D. (2008). "Development of the soil moisture index to quantify agricultural drought and its user friendliness in severity-area-duration assessment." Journal of Hydrometeorology, Vol. 9, pp. 660-676. 

  25. Woli, P., Jones, J.W., Ingram, K.T., and Fraisse, C.W. (2012). "Agricultural reference index for drought (ARID)." Agronomy Journal, Vol. 104, pp. 287-300. 

  26. Xia, Y., B. Cosgrove, A., Mitchell, K. E., Peters-Lidard, C. D., Ek, M. B., Kumar, S., Mocko, D., and Wei, H. (2016). "Basin-scale assessment of the land surface energy budget in the National Centers for Environmental Prediction operational and research NLDAS-2 systems." Journal of Geophysical Research: Atmospheres, Vol. 121, pp. 196-220, doi: 10.1002/2015JD023889. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로