최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.48 no.2, 2020년, pp.158 - 166
A gene coding for the xylanase was cloned from Paenibacillus woosongensis, followed by determination of its complete nucleotide sequence. This xylanase gene, designated as xyn10A, consists of 1,446 nucleotides encoding a polypeptide of 481 amino acid residues. Based on the deduced amino acid sequenc...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Sharma N, Sharma N. 2017. Microbial xylanases and their industrial applications as well as future perspectives: a review. Global J. Biol. Agric. Health Sci. 6: 5-12.
Valenzuela SV, Diaz P, Javier Pastor FI. 2010. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J. Agric. Food Chem. 55: 4814-4818.
Imjongjairak S, Jommuengbout P, Karpilanondh P, Katsuzaki H, Sakka M, Kimura T, et al. 2015. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, $ {\alpha}-L-Araf-(1{\rightarrow}2)-[{\alpha}-L-Araf-(1{\rightarrow}3)]-D-Xylp$ , from rye arabinoxylan. Enzyme Microb. Technol. 72: 1-9.
Sakka M, Higashi Y, Kimura T, Ratanakhanokchai K, Sakka K. 2011. Characterization of Paenibacillus curdlanolyticus B-6 Xyn10D, a xylanase that contains a family 3 carbohydrate-binding module. Appl. Environ. Microbiol. 77: 4260-4263.
Phakeenuya V, Ratanakhanokchai K, Kosugi A, Tachaapaikoon C. 2020. A novel multifunctional GH9 enzyme from Paenibacillus curdlanolyticus B-6 exhibiting endo/exo functions of cellulase, mannanase and xylanase activities. Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-020-10388-3.
Valenzuela SV, Diaz P, Pastor FIJ. 2014. Xyn11E from Paenibacillus barcinonensis BP-23: a LppX-chaperone-dependent xylanase with potential for upgrading paper pulps. Appl. Microbiol. Biotechnol. 98: 5949-5957.
Valenzuela SV, Diaz P, Pastor FI. 2012. Modular glucuronoxylanspecific xylanase with a family CBM35 carbohydrate-binding module. Appl. Environ. Microbiol. 78: 3923-3931.
Fukuda M, Watanabe S, Yoshida S, Itoh H, Itoh Y, Kamio Y, et al. 2010. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. J. Bacteriol. 192: 2210-2219.
Watanabe S, Viet DN, Kaneko J, Kamio Y, Yoshida S. 2008. Cloning, expression, and transglycosylation reaction of Paenibacillus sp. strain W-61 xylanase 1. Biosci. Biotechnol. Biochem. 72: 951-958.
Harada KM, Tanaka K, Fukuda Y, Hashimoto W, Murata K. 2008. Paenibacillus sp. strain HC1 xylanases responsible for degradation of rice bran hemicelluloses. Microbiol. Res. 163: 293-298.
Hagiwara Y, Mihara Y, Sakagami K, Sagara R, Bat-Erdene U, Yatsunami R, et al. 2020. Isolation of four xylanases capable of hydrolyzing corn fiber xylan from Paenibacillus sp. H2C. Biosci. Biotechnol. Biochem. 84: 640-650.
Wongratpanya K, Imjongjairak S, Waeonukul R, Sornyotha S, Phitsuwan P, Pason P, et al. 2015. Multifunctional properties of glycoside hydrolase family 43 from Paenibacillus curdlanolyticus strain B-6 including exo- $\beta$ -xylosidase, endo-xylanase, and $\alpha$ -L-arabinofuranosidase activities. BioResour. 10: 2492-2505.
Freudl R. 2018. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact. 17: 52. doi: 10.1186/s12934-018-0901-3.
Tjalsma H, van Dijl JM. 2005. Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 5: 4472-4482.
Rusch SL, Kendall DA. 2007. Interactions that drive Sec-dependent bacterial protein transport. Biochemistry 46: 9665-9673.
Li R, Kibblewhite R, Orts WJ, Lee CC. 2009. Molecular cloning and characterization of multidomain xylanase from manure library World J. Microbiol. Biotechnol. 25: 2071-2078.
Ogle CT, Mather WH. 2016. Proteolytic crosstalk in multi-protease networks. Phys. Biol. 13(2): 025002.
Feng JX, Karita S, Fujino E, Fujino T, Kimura T, Sakka K, et al. 2000. Cloning, sequencing, and expression of the gene encoding a cell-bound multi-domain xylanase from Clostridium josui, and characterization of the translated product. Biosci. Biotechnol. Biochem. 64: 2614-2624.
Ytterberg AJ, Zubarev RA, Baumgarten T. 2019. Posttranslational targeting of a recombinant protein promotes its efficient secretion into the Escherichia coli periplasm. Appl. Environ. Microbiol. 85(13): e00671-19.
Dalbey RE, Kuhn A. 2012. Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. FEMS Microbiol. Rev. 36: 1023-1045.
Kim DR, Lim HK, Lee KI, Hwang IT. 2016. Identification of a novel cellulose-binding domain within the endo- $\beta$ -1,4-xylanase KRICT PX-3 from Paenibacillus terrae HPL-003. Enzyme Microb. Technol. 93-94: 166-173.
Bai W, Xue Y, Zhou C, Ma Y. 2015. Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5. Biotechnol. Appl. Biochem. 62: 208-217.
Song HY, Lim HK, Kim DR, Lee KI, Hwang IT. 2014. A new bi-modular endo- $\beta$ -1,4-xylanase KRICT PX-3 from whole genome sequence of Paenibacillus terrae HPL-003. Enzyme Microb. Technol. 54: 1-7.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.