$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

천궁 초작과 연작 재배지의 토양특성이 토양 곰팡이 군집에 미치는 영향
Effect of Soil Properties on Soil Fungal Community in First and Continuous Cultivation Fields of Cnidium officinale Makino 원문보기

韓國藥用作物學會誌 = Korean journal of medicinal crop science, v.28 no.3, 2020년, pp.209 - 220  

김기윤 (국립산림과학원 산림약용자원연구소) ,  한경민 (국립산림과학원 산림약용자원연구소) ,  김현준 (국립산림과학원 산림약용자원연구소) ,  김충우 (충북농업기술원 친환경연구과) ,  전권석 (국립산림과학원 산림약용자원연구소) ,  정충렬 (국립산림과학원 산림약용자원연구소)

Abstract AI-Helper 아이콘AI-Helper

Background: This study investigated the effects of soil properties on the soil fungal community in first and continuous cultivation areas of Cnidium officinale Makino. Methods and Results: The soil fungal community was analyzed for relative abundance and principal coordinate analysis (PCoA) was cond...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 천궁의 초작과 연작 재배지에서 토양 곰팡이 군집을 분석하고, 재배지 토양특성이 토양곰팡이 군집에 미치는 영향을 구명하기 위해 수행하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
천궁의 효능은 무엇인가? 천궁 (Cnidium officinale Makino)은 산형과 (Umbelliferae)에 속하는 다년생 초본으로 지하부 근경을 건조한 후 세절하여 약재로 사용하고 있다. 천궁은 식품에 제한적 원료로 사용이 허가되어 있고, 혈관확장, 항염증, 항균 등의 효능이 있어, 한방에서는 사물탕, 십전대보탕, 교애귀궁탕으로 처방 하여 보혈, 강장, 진정, 진통, 구어혈, 냉증, 월경장해 등의 치료를 목적으로 널리 사용되는 생약재이다 (Oh et al., 2010; BHHES, 2012).
천궁의 재배면적 및 생산량이 감소하는 원인은 무엇인가 하지만 천궁의 재배면적 및 생산량은 1997년 789 ha, 2,294 M/T (metric ton)이었던 것이 2017년에는 185 ha, 1,290 M/T로 현저히 감소하였다 (MAFRA, 2018). 이러한 감소이유는 고온과 가뭄 등 기후변화에 따른 민감성과 연작장해에 따른 재배지 교체의 어려움에 있다 (Kim et al., 2015; Seo et al.
천궁의 특징은 무엇인가? 천궁 (Cnidium officinale Makino)은 산형과 (Umbelliferae)에 속하는 다년생 초본으로 지하부 근경을 건조한 후 세절하여 약재로 사용하고 있다. 천궁은 식품에 제한적 원료로 사용이 허가되어 있고, 혈관확장, 항염증, 항균 등의 효능이 있어, 한방에서는 사물탕, 십전대보탕, 교애귀궁탕으로 처방 하여 보혈, 강장, 진정, 진통, 구어혈, 냉증, 월경장해 등의 치료를 목적으로 널리 사용되는 생약재이다 (Oh et al., 2010; BHHES, 2012).
질의응답 정보가 도움이 되었나요?

참고문헌 (73)

  1. Alami MM, Xue J, Ma Y, Zhu D, Abbas A, Gong Z and Wang X. (2020). Structure, function, diversity and composition of fungal communities in rhizospheric soil of Coptis chinensis Franch under a successive cropping system. Plants. 9:244. https://www.mdpi.com/2223-7747/9/2/244/htm (cited by 2020 March 18). 

  2. Atlas R and Bartha R. (1998). Microbial ecology: Fundamentals and application. (4th ed.). Benjamin and Cummings Science Publishing. San Francisco, CA, USA. p.322-323. 

  3. Avidano L, Gamalero E, Cossa GP and Carraro E. (2005). Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Applied Soil Ecology. 30:21-33. 

  4. Bai L, Cui J, Jie W and Cai B. (2015). Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiological Research. 180:49-56. 

  5. Baik SY, Jang KS, Choi YH, Kim JC and Choi GJ. (2011). Resistance degree of radish cultivars to Fusarium oxysporum f. sp. raphani according to several conditions. Korean Journal of Horticultural Science and Technology. 29:48-52. 

  6. Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG and Greer CW. (2013). Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME Journal. 7:1200-1210. 

  7. Berg G and Smalla K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology. 68:1-13. 

  8. Bonghwa Highand Herbs Experimental Station(BHHES). (2012). The study on highland herbs. Bonghwa Highand Herbs Experimental Station. Bonghwa, Korea. p.26-27. 

  9. Bridge P and Spooner B. (2001). Soil fungi: Diversity and detection. Plant and Soil. 232:147-154. 

  10. Chen M, Li X, Yang Q, Chi X, Pan L, Chen N, Yang Z, Wang T, Wang M and Yu S. (2012). Soil eukaryotic microorganism succession as affected by continuous cropping of peanutpathogenic and beneficial fungi were selected. PLoS One. 7:e40659. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393692/ (cited by 2020 March 18). 

  11. de Forest JL and Scott LG. (2010). Available organic soil phosphorus has an important influence on microbial community composition. Soil Science Society in American Journal. 74: 2059-2066. 

  12. Dong L, Xu J, Feng G, Li X and Chen S. (2016). Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Scientific Reports. 6:31802. https://www.nature.com/articles/ srep31802 (cited by 2020 March 18). 

  13. Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L and Smalla K. (2003). Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Applied and Environmental Microbiology. 69:3758-3766. 

  14. Gustafson DJ and Casper BB. (2004). Nutrient addition affects AM fungal performance and expression of plant/fungal feedback in three serpentine grasses. Plant and Soil. 259:9-17. 

  15. Hannula SE, de Boer W and van Veen J. (2012). A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects. PLoS ONE. 7:e33819. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328480/ (cited by 2020 March 18). 

  16. Jeong JH, Lee KS and So JD. (1991). Effects of phytotoxins on change of pH in the continuous cropping soil. Korean Journal of Soil Science and Fertilizer. 24:17-21. 

  17. Jung CR, Jeong DH, Park HW, Kim HJ, Jeon KS and Yoon JB. (2019). Molecular identification of thrips in two medicinal crops, Cnidium officinale Makino and Ligusticum chuanxiong Hort. Korean Journal of Medicinal Crop Science. 27:17-23. 

  18. Jung YJ, Nou IS, Kim YK and Kang KK. (2015). Effect of green manure crops incorporation for reduction of Pythium zingiberum in ginger continuous cultivation. Korean Journal of Plant Resource. 28:271-278. 

  19. Kang SW, Yeon BY, Hyeon GS, Bae YS, Lee SW and Seong NS. (2007). Changes of soil chemical properties and root injury ratio by progress years of post-harvest in continuous cropping soils of ginseng. Korean Journal of Medicinal Crop Science. 15:157-161. 

  20. Kim CH and Kim YK. (2002). Present status of soilborne disease incidence and scheme for its integrated management in Korea. Research in Plant Disease. 8:146-161. 

  21. Kim DR, Gang GH, Jung HJ, Hong SW and Kwak YS. (2016). Effect of culture conditions on the chemical control efficacy of root rot disease of Platycodon grandiflorum and Codonopsis lanceolata. Korean Journal of Pesticide Science. 20:165-171. 

  22. Kim JG, Park HR, Yang KW, Kim SS, Kwon CH, Jeong YH and Hur JH. (2011). Processing and reducing factors of difenoconazole during ginseng processing. Korean Journal of Food Science and Technology. 43:263-270. 

  23. Kim KY, Han KM, Kim HJ, Jeon KS, Kim CW and Jung CR. (2020). The study of soil chemical properties and soil bacterial communities on the cultivation systems of Cnididum officinale Makino. Korean Journal of Environmental Agriculture. 39:1-9. 

  24. Kim KY, Samaddar S, Chatterjee P, Krishnamoorthy R, Jeon SY and Sa TM. (2019a). Structural and functional responses of microbial community with respect to salinity levels in a coastal reclamation land. Applied Soil Ecology. 137:96-105. 

  25. Kim KY, Um YR, Jeong DH, Kim HJ, Kim MJ and Jeon KS. (2019b). Study on the correlation between the soil bacterial community and growth characteristics of wild-simulated ginseng (Panax ginseng C. A. Meyer). Korean Journal of Environmental Biology. 37:380-388. 

  26. Kim ST, Ahn MI and Yun SC. (2010). Evaluation of anthracnose forecaster of an integrated pest management system on hot pepper in the fields. Research in Plant Disease. 16:66-73. 

  27. Kwon CS and Lee SG. (2002). Occurrence and ecological characteristics of red pepper Anthracnose. Research in Plant Disease. 8:120-123. 

  28. Lauber CL, Strickland MS, Bradford MA and Fierer N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry. 40:2407-2415. 

  29. Lee SG. (2004). Fusarium species associated with ginseng(Panax ginseng) and their role in the root-rot of ginseng plant. Research in Plant Disease. 10:248-259. 

  30. Lee SW, Lee SH, Seo MW, Park KH and Jang IB. (2018). Effects of irrigation and ginseng root residue on root rot disease of 2-years-old ginseng and soil microbial community in the continuous cropping soil of ginseng. Korean Journal of Medicinal Crop Science. 26:345-353. 

  31. Lee SW, Park KH, Lee SH, Jang IB and Jin ML. (2017). Effect of green manure crop cultivation on soil chemical properties and root rot disease in continuous cropping field of ginseng. Korean Journal of Medicinal Crop Science. 25:1-9. 

  32. Li Y, Li Z, Arafat Y and Lin X. (2020). Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Annals of Microbiology. 70:7. https://doi.org/10.1186/s13213-020-01555-y (cited by 2019 May 18). 

  33. Lim KB, Lee HJ, Ahn BS, Sung BR and Shin JS. (2005). Introducing strip cropping for decreasing the damage of the continuous corn cultivation. Journal of the Korean Society of Grassland Science. 25:97-104. 

  34. Manici LM, Kelderer M, Franke-Whittel IH, Ruhmer T, Baab G, Nicoletti F, Caputo F, Topp A, Insam H and Naef A. (2013). Relationship between root-endophytic microbial communities and replant disease in specialized apple growing areas in Europe. Applied Soil Ecology. 72:207-214. 

  35. Mazzola M and Manici LM. (2012). Apple replant disease: Role of microbial ecology in cause and control. Annual Review of Phytopathology. 50:45-65. 

  36. Ministry of Agriculture, Food and Rural Affairs(MAFRA). (2018). Production performance of industrial drops. Ministry of Agriculture, Food and Rural Affairs. Sejong, Korea. p.8-22. 

  37. Mondal F, Asaduzzaman, Kobayashi Y, Ban T and Asao T. (2013). Recovery from autotoxicity in strawberry by supplementation of amino acids. Scientia Horticulturae. 164:137-144. 

  38. Monfort-Salvador I, Garcia-Montero LG and Grande MA. (2015). Impact of calcium associated to calcareous amendments on ectomycorrhizae in forests: A review. Journal of Soil Science and Plant Nutrition. 15:217-231. 

  39. Moon JY, Min BK, Shin JH, Choi YC, Cho HJ, Lee YH, Lee JG and Heo JY. (2018). Effect of curing treatments on the Fusarium Wilt(Fusarium oxysporum) of Sweet potato(Ipomoea batatas L.). Korean Journal of Soil Science and Fertilizer. 51:247-254. 

  40. Nam MH, Kang YJ, Lee IH, Kim HG and Chun CH. (2011). Infection of daughter plants by Fusarium oxysporum f. sp. fragariae through runner propagation of strawberry. Korean Journal of Horticultural Science and Technology. 29:273-277. 

  41. Nayyar A, Harmel C, Lafond G, Gossen BD, Hason K and Germida J. (2012). Soil microbial quality associated with yield reduction in continuous-pea. Applied Soil Ecology. 43:115-121. 

  42. Oh YJ, Seo HR, Choi YM and Jung DS. (2010). Evaluation of antioxidant activity of the extracts from the aerial parts of Cnidium officinale Makino. Korean Journal of Medicinal Crop Science. 18:373-378. 

  43. Park JC, Noh TH, Kim MJ, Lee SB, Park CS, Kang CS, Lee JJ and Kim TS. (2010). Effect of cropping system on disease incidence by soil-borne Bymovirus in barley and on density of the vector, Polymyxa graminis. Research in Plant Disease. 16:115-120. 

  44. Park JH, Seo YJ, Choi SY, Zhang YS, Ha SK and Kim JE. (2011). Soil physico-chemical properties and characteristics of microbial distribution in the continuous cropped field with Paeonia lactiflora. Korean Journal of Soil Science and Fertilizer. 44:841-846. 

  45. Park MS, Jang KS, Choi YH, Kim JC and Choi GJ. (2013). Simple mass-screening methods for resistance of tomato to Fusarium oxysporum f. sp. lycopersici. Korean Journal of Horticultural Science and Technology. 31:110-116. 

  46. Pettersson M. (2004). Factors affecting the rates of change in soil bacterial communities. Ph. D. Thesis. Lund University. Lund, Sweden. p.1-43. 

  47. Polme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang PH, Matsuda Y, Naadel T, Kennedy PG, Koljalg U and Tedersoo L. (2013). Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytologist. 198:1239-1249. 

  48. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R and Fierer N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal. 4:1340-1351. 

  49. Rural Development Administration(RDA). (2013). Analysis manual of comprehensive examination laboratory(soil, plant, water and liquid manure). Rural Development Administration. Suwon, Korea. p.31-53. 

  50. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ and Weber CF. (2009). Introducing mothur: Open source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology. 75:7537-7541. 

  51. Seo YJ, Nam HH, Jang WC, Kim JS and Lee BY. (2018). Effect of meteorological factors on evapotranspiration change of Cnidium officinale Makino. Korean Journal of Agricultural and Forest Meteorology. 20:366-375. 

  52. Shin JH, Yun BD, Kim HJ, Kim SJ and Chung DY. (2012). Soil environment and soil-borne plant pathogen causing root rot disease of ginseng. Korean Journal of Soil Science and Fertilizer. 45:370-376. 

  53. Singh BK, Munro S, Reid E, Ord B, Potts M, Paterson E and Millard P. (2006). Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. European Journal of Soil Science. 57:72-82. 

  54. Tan Y, Cui Y, Li H, Kuang A, Li X, Wei Y and Ji X. (2017). Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiological Research. 194:10-19. 

  55. Tang J, Xue Z, Daroch M and Ma J. (2015). Impact of continuous Salvia miltiorrhiza cropping on rhizosphere actinomycetes and fungi communities. Annals of Microbiology. 65:1267-1275. 

  56. Ullah S, Ai C, Ding W, Jiang R, Zhao S, Zhang J, Zhou W, Hou Y and He P. (2019). The response of soil fungal diversity and community composition to long-term fertilization. Applied Soil Ecology. 140:35-41. 

  57. Walkley A and Black IA. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37:29-38. 

  58. Wei X, Wang X, Cao P, Gao Z, Chen AJ and Han J. (2020). Microbial community changes in the rhizosphere soil of healthy and rusty Panax ginseng and discovery of pivotal fungal genera associated with rusty roots. BioMed Research International. 2020:8018525. https://www.hindawi.com/journals/bmri/2020/8018525/ (cited by 2020 March 18). 

  59. Wu L, Chen J, Wu H, Wang J, Wu Y, Lin S, Khan MU, Zhang Z and Lin W. (2016). Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing. Scientific Reports. 6:26601. https://www.nature.com/articles/srep26601 (cited by 2020 Jan 7). 

  60. Wu L, Wang H, Zhang Z, Lin R, Zhang Z and Lin W. (2011). Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS ONE. 6:e20611. https://doi.org/10.1371/journal.pone.0020611 (cited by 2020 Jan 22). 

  61. Wu Y, Zeng J, Zhu Q, Zhang Z and Lin X. (2017). pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Scientific Reports. 7:40093. https://www.nature.com/articles/srep40093 (cited by 2020 Jan 2). 

  62. Wu Z, Liu Q, Li Z, Cheng W, Sun J, Guo Z, Li Y, Zhou J, Meng D, Li H, Lei P and Yin H. (2018). Environmental factors shaping the diversity of bacterial communities that promote rice production. BMC Microbiology. 18:51. https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-018-1174-z (cited by 2020 Feb 3). 

  63. Xiong W, Zhao Q, Zhao J, Xun W, Li R, Zhang R, Wu H and Shen Q. (2015). Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microbial Ecology. 70:209-218. 

  64. Yang R, Mo Y, Liu C, Wang Y, Ma J, Zhang Y, Li H and Zhang X. (2016). The effects of cattle manure and garlic rotation on soil under continuous cropping of watermelon (Citrullus lanatus L.). PLoS ONE 11:e0156515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892587/ (cited by 2020 Jan 22). 

  65. Yang T, Tedersoo L, Soltis PS, Soltis DE, Gilbert JA, Sun M, Shi Y, Wang Y, Li Y, Zhang J, Chen Z, Lin H, Zhao H, Fu C and Chu H. (2019). Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China. ISME Journal. 13:686-697. 

  66. Yao HY, Jiao XD and Wu FZ. (2006). Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant and Soil. 284:195-203. 

  67. Yao Q, Xu Y, Liu X, Liu J, Huang X, Yang W, Yang Z, Lan L, Zhou J and Wang G. (2019). Dynamics of soil properties and fungal community structure in continuous-cropped alfalfa fields in Northeast China. PeerJ. 7:e7127. https://peerj.com/articles/7127/ (cited by 2020 March 18). 

  68. Yergeau E, Lawrence JR, Sanschagrin S, Walser MJ, Korber DR and Greer CW. (2012). Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Applied and Environmental Microbiology. 78:7626-7637. 

  69. Zhang M, Wang N, Zhang J, Hu Y, Cai D, Guo J, Wu D and Sun G. (2019a). Soil physicochemical properties and the rhizosphere soil fungal community in a Mulberry(Morus alba L.) / Alfalfa(Medicago sativa L.) intercropping system. Forests. 10:167. https://www.mdpi.com/1999-4907/10/2/167 (cited by 2020 March 18). 

  70. Zhang T, Wang Z, Lv X, Li Y and Zhuang L. (2019b). Highthroughput sequencing reveals the diversity and community structure of rhizosphere fungi of Ferula Sinkiangensis at different soil depths. Scientific Reports. 9:6558. https://doi.org/10.1038/s41598-019-43110-z (cited by 2020 May 18). 

  71. Zhou X and Wu F. (2012). Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiology Ecology. 80:469-478. 

  72. Zhou X, Gao D, Liu J, Qiao P, Zhou X, Lu H, Wu X, Liu D, Jin X and Wu F. (2014). Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber(Cucumis sativus L.) system. European Journal of Soil Biology. 60:1-8. 

  73. Zhou X, Yu G and Wu F. (2012). Soil phenolics in a continuously mono-cropped cucumber(Cucumis sativus L.) system and their effects on cucumber seedling growth and soil microbial communities. European Journal of Soil Science. 63:332-340. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로