$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

신발 분야 국내외 운동역학 연구동향 분석: 2015-2019년에 발간된 연구를 중심으로
Analysis of Domestic and International Biomechanics Research Trends in Shoes: Focusing on Research Published in 2015-2019 원문보기

한국운동역학회지 = Korean journal of sport biomechanics, v.30 no.2, 2020년, pp.185 - 195  

Back, Heeyoung (Division of Kinesiology & Sports Studies, College of Science and Industry Convergence, Ehwa Womans University) ,  Yi, Kyungock (Division of Kinesiology & Sports Studies, College of Science and Industry Convergence, Ehwa Womans University) ,  Lee, Jusung (Department of sport science, Kangwon National University) ,  Kim, Jieung (Department of Physical Education, Sangmyung University) ,  Moon, Jeheon (Department of Sport Science, Korea Institute of Sport Science)

Abstract AI-Helper 아이콘AI-Helper

Objective: The purpose of this study was to identify recent domestic and international research trends regarding shoes carried out in biomechanics field and to suggest the direction of shoe research later. Method: To achieve this goal of research, the Web of Science, Scopus, PubMed, Korea Education ...

주제어

표/그림 (3)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Langley, Cramp & Morrison (2019)은 일반화,쿠션형 운동화를 착용한 후 하체의 운동학적 측면에 어떻게 영향을 미치는 지에 대한 연구를 진행하였다. 그 결과 신발 조건 간에 초기 접촉과 toe-off 시 발목과 무릎관절의 유의한 차이를 보였다고 하였으며, 결과를 토대로 발목관절의 외번을 줄여 부상 위험을 줄이기 위한 동작 제어 운동화 제작에 기초자료를 제공하였다. 발의 중족골은 달리기 자세 단계에서 나타나는 큰 변형으로 인해 스트레스 골절에 특히 취약하다.
  • 따라서 본 연구는 최근 운동역학 분야에서 수행한 신발 관련 국내외 연구동향을 파악하여 추후 신발 연구의 방향을 제시하는데 있다. 더 나아가 이 연구를 통하여 일부 주제에 편향성을 지양하고 앞으로 발전될 분야를 살펴 논문이 질적, 양적으로 발전할 수 있는 토대를 마련하고자 한다.
  • 따라서 본 연구는 최근 운동역학 분야에서 수행한 신발 관련 국내외 연구동향을 파악하여 추후 신발 연구의 방향을 제시하는데 있다. 더 나아가 이 연구를 통하여 일부 주제에 편향성을 지양하고 앞으로 발전될 분야를 살펴 논문이 질적, 양적으로 발전할 수 있는 토대를 마련하고자 한다.
  • 두 번째로 특성을 분류한 연구에서 Moon & Song (2017)은스마트 신발의 다양한 기능을 구현하기 위해서 신발의 각 부품들이 구조 및 특성들을 분류하였으며, 신발 내부에 장착 시고려할 특성 등을 파악하였다. 따라서 스마트 부품들이 신발에 삽입될 때 착화감 및 고유 기능에 대한 장애 요인과 제거할 수 있는 신발 구조를 제안함으로써 스마트 신발의 기능을 높일 수 있는 방향을 제시하였다.
  • 또한, 국내 신발 기업에서 나타나는 인력 부족과 시장의 미성숙 등의 문제점 제시와 기업 육성 및 인력 양성을 포함한 산업 간 융 · 복합적 발전을 위한 지원 정책 제도 마련의 필요성을 제시하였다.
  • 또한, Shinde 등(2019)의 연구에서 언급된 전기생산과 같이 친환경적, 에너지재생산을 위한 스마트 신발 연구들도 미래를 위해서 연구되어야 할 것이다. 이에 지금까지 고찰한 선행연구를 바탕으로 향후 신발 연구 방향을 제언하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (62)

  1. Burns, G. T. & Tam, N. (2019). Is it the shoes? A simple proposal for regulating footwear in road running. British Journal of Sports Medicine, 1(1), 1-2 

  2. Byun, K. S. (2010). Biomechanical analysis of different outsole types of functional walking shoes. Unpublished Master's degree thesis, Graduate School of Sungkyunkwan University. 

  3. Cheng, W. K., Lam, H. L., Lin, F. & Ge, M. (2019). A customizable smart shoes with location tracking function for the elderly. Materials Today: Proceedings, 16, 1423-1430. 

  4. Cho, H. S. & Chae, S. W. (2017). The Effect of Masai Shoes on Lumbar Disc using Motion Capture and FEM. Korean Society for Precision Engineering, 628-628. 

  5. Choi, K. J. (2003). Biomechanical differences between general walking shoe and MBT functional walking shoe. published Doctor's Dissertation. Unpublished Graduate School of Sungkyunkwan University. 

  6. Dames, K. D. & Smith, J. D. (2016). Effects of load carriage and footwear on lower extremity kinetics and kinematics during overground walking. Gait Posture, 50, 207-211. 

  7. Firminger, C. R. & Edwards, W. B. (2016). The influence of minimalist footwear and stride length reduction on lowerextremity running mechanics and cumulative loading. Journal of Science and Medicine in Sport, 19(12), 975-979. 

  8. Firminger, C. R., Fung, A., Loundagin, L. L. & Edwards, W. B. (2017). Effects of footwear and stride length on metatarsal strains and failure in running. Clinical Biomechanics, 49(1), 8-15. 

  9. Franklin, S., Grey, M. J., Heneghan, N., Bowen, L. & Li, F. X. (2015). Barefoot vs common footwear: a systematic review of the kinematic, kinetic and muscle activity differences during walking. Gait & Posture, 42(3), 230-239. 

  10. Fredericks, W., Swank, S., Teisberg, M., Hampton, B., Ridpath, L. & Hanna, J. B. (2015). Lower extremity biomechanical relationships with different speeds in traditional, minimalist, and barefoot footwear. Journal of Sports Science and Medicine, 14(2), 276-283. 

  11. Fu, L., Gu, Y., Mei, Q., Baker, J. S. & Fernandez, J. (2019). A kinematics analysis of the lower limb during running with different sports shoes. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 233(1), 46-52. 

  12. Fuller, J. T., Bellenger, C. R., Thewlis, D., Tsiros, M. D. & Buckley, J. D. (2015). The effect of footwear on running performance and running economy in distance runners. Sports Medicine, 45(3), 411-422. 

  13. Hoerzer, S., Federolf, P. A., Maurer, C., Baltich, J. & Nigg, B. M. (2015). Footwear Decreases Gait Asymmetry during Running. PloS One, 10(10), 1-12. 

  14. Hunter, I., McLeod, A., Valentine, D., Low, T., Ward, J. & Hager, R. (2019). Running economy, mechanics, and marathon racing shoes. Journal of Sports Sciences, 37(20), 2367-2373. 

  15. Hutchison, L., Scharfbillig, R., Uden, H. & Bishop, C. (2015). The effect of footwear and foot orthoses on transverse plane knee motion during running-A pilot study. Journal of Science and Medicine in Sport, 18(6), 748-752. 

  16. Jeong, N. S., Hackett, E. G., Lee, J. Y. & Sazonov, E. (2019). Loosely Coupled Wireless Charging of Footwear-based Sensor System. IEEE 20th Wireless and Microwave Technology Conference, 1-3. 

  17. Jun, S. P., Yoo, Y. W. & Park, S B. (2018). The Pre-Study of Development of Smart Shoe with Musculoskeletal Injury Prevention and Monitoring System: Selection of Plantar Pressure Sensor Location and Development of Prototype. Journal of the Ergonomics Society of Korea, 37(2), 101-110. 

  18. Kim, Y. J. & Park, J. W. (2016). The Influence of Unstable Shoes on Kinematics and Kinetics of the Lower limb Joints during Sit-to-stand task. The Journal of Korean Physical Therapy, 28(1), 14-21. 

  19. Kim, H. S., Lee, U. H. & Kim, J. C. (2016). Development of an IoT-Based Small Wearable Device Attachable to Shoes for Healthcare. The Korean Institute of Broadcast and Media Engineers, 1(2), 154-156. 

  20. Kim, K. I. (2015). Forecast of rapid market growth due to convergence with smart shoes and health care systems. Kisti Market Report, 1(1), 3-6. 

  21. Kim, T. S. & Kwon, S. R. (2017). Real Time Healthcare System using Smart Shoes. The Institute of Electronics and Information Engineers, 1(1), 1372-1373. 

  22. Kim, Y. J. & Chae, W. S. (2007). The Plantar Pressure Comparison between the Curved Rear Balance Shoes and Normal Shoes. Korean Journal of Sport Biomechanics, 17(3), 173-180. 

  23. Kulmala, J. P., Kosonen, J., Nurminen, J. & Avela, J. (2018). Running in highly cushioned shoes increases leg stiffness and amplifies impact loading. Scientific Reports, 8(1), 17496. 

  24. Kwak, C. S. & Yoon, J. S. (2017). The Effects of Minimal Shoe on Lower Extremity Biomechanics and Safety During Running. Korean Journal of Teacher Education, 33(1), 113-130. 

  25. Lacirignola, J., Weston, C., Byrd, K., Metzger, E., Singh, N., Davis, S. ... & Richter, M. (2017). Instrumented footwear inserts: a new tool for measuring forces and biomechanical state changes during dynamic movements. IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN). 119-124. 

  26. Landorf, K. B. & Keenan, A. M. (2002). An evaluation of two foot-specific, health-related quality-of-life measuring instruments. Foot & ankle International, 23(6), 538-546. 

  27. Langley, B., Cramp, M. & Morrison, S. C. (2018). The influence of running shoes on inter-segmental foot kinematics. Footwear Science, 10(2), 83-93. 

  28. Langley, B., Cramp, M. & Morrison, S. C. (2019). The Influence of Motion Control, Neutral, and Cushioned Running Shoes on Lower Limb Kinematics. Journal of Applied Biomechanics, 35(3), 216-222. 

  29. Li, G., Liu, T., Yi, J., Wang, H., Li, J. & Inoue, Y. (2016). The lower limbs kinematics analysis by wearable sensor shoes. IEEE Sensors Journal, 16(8), 2627-2638. 

  30. McHenry, R. D., Arnold, G. P., Wang, W. & Abboud, R. J. (2015). Footwear in rock climbing: Current practice. The Foot (Edinb), 25(3), 152-158. 

  31. Moon, K. S. & Song, H. S. (2017). A shoe structure for function implementation of a smart shoe. Korean Society for Precision Engineering, 617-617. 

  32. Nam, H. C., Moon, G. H. & Choi, Y. J. (2016). Changes in Balance and Gait Patterns with Different Heel Heights Among Women in Their 20's. Journal of The Korean Society of Integrative Medicine, 4(1), 49-56. 

  33. Nam, K. J., Lee, J. H. & Kim, J. P. (2015). The Review of Biomechanical Analysis of Functional shoes for invent a nurses shoes. Korean Journal of Sports Science, 24(3), 1617-1627. 

  34. Nigg, B. M. (1986). Some comments forerunners. In Biomechanics of running shoes, N.M.nigg (ed), champaign: Human Kinemetics Publishers, 1(1), 162-165. 

  35. Papalia, R., Di Pino, G., Tecame, A., Vadala, G., Formica, D., Di Martino, A. & Denaro, V. (2015). Biomechanical and neural changes evaluation induced by prolonged use of nonstable footwear: a systematic review. Musculoskeletal Surgery, 99(3), 179-187. 

  36. Park, J. J., Kim, K. H. & Park, S. B. (2015). The Analysis of Foot Pressure and Lap Time for the Development of Korean Bobsleigh Shoes. Korean Journal of Sport Biomechanics, 25(4), 465-474. 

  37. Park, J. J. & Park, S. B. (2015). Biomechanical Anlaysis for the Development of Windlass Mechanism for Trail-walking Shoe, Korean Journal of Sport Biomechanics, 25(4), 489-498. 

  38. Park, S. B. (2006). A Biomechanical Footwear Research & Analysis in Korea and Past, Present and Future in International Research Trend. Journal of the Ergonomics Society of Korea, 77-82. 

  39. Park, S. B., Kim, C. H. & Joo, J. P. (2006). A Biomechanical Research in functional footwear development for Degenerative Osteoarthritis Patients. Journal of the Ergonomics Society of Korea, 83-89. 

  40. Park, S. B., Lee, K. D., Kim, D. W., Yoo, J. H., Jung, J. M., Park, K. H. & Ryu, W. H. (2016a). Development of biomechanicsbased sports climbing shoes with excellent sweat absorption and quick drying through plantar pressure analysis. Journal of the Ergonomics Society of Korea, 414-414. 

  41. Park, S. B., Lee, K. D., Kim, D. W., Yoo, J. H., Jung, J. M., Park, K. H. & Kim, J. H. (2016b). An Analysis of Lower Extremity of Range of Motion and Forefoot Bending Angle in Bobsleigh Start by Bobsleigh Shoe. Journal of the Korean Society for Precision Engineering, 589-590. 

  42. Park, S. B., Lee, K. D., Kim, D. W., Yoo, J. H., Jung, J. M., Park, K. H. & Ryu, W. H. (2017a). Current status of footwear development using 3D printing. Journal of the Ergonomics Society of Korea, 232-232. 

  43. Park, S. B., Lee, K. D., Kim, D. W., Yoo, J. H., Jung, J. M., Park, K. H. & Ryu, W. H. (2017b). Current status and prospect of smart shoes technology development. Journal of the Ergonomics Society of Korea, 219-219. 

  44. Pham, C., Diep, N. N. & Phuong, T. M. (2017). e-Shoes: Smart shoes for unobtrusive human activity recognition. In 2017 9th International Conference on Knowledge and Systems Engineering, 269-274. 

  45. Rahemi, H., Nguyen, H., Lee, H. & Najafi, B. (2018). Toward smart footwear to track frailty phenotypes-using propulsion performance to determine frailty. Sensors, 18(6), 1763. 

  46. Sadigursky, D., Santos, N. A. M., Queiroz, G. C. D., Oliveira, L., Souza, M. P. D., Carneiro, R. J. F. & Colavolpe, P. O. (2017). Customized footwear for motion control to treat anterior knee pain among runners. Medical Express, 4(2), 1-7. 

  47. Sayer, T. A., Hinman, R. S., Paterson, K. L., Bennell, K. L., Fortin, K., Kasza, J. & Bryant, A. L. (2019). Differences and mechanisms underpinning a change in the knee flexion moment while running in stability and neutral footwear among young females. Journal of Foot and Ankle Research, 12(1), 1-9. 

  48. Shin, H. S., Lee, K. K., Kim, M. S. & Park, J. H. (2007). The effects of shoes with curved out-sole on the variations of static posture and EMG of calf. Journal of the Ergonomics Society of Korea, 267-277. 

  49. Shinde, M. R. A., Nalbalwar, S. L. & Singh, S. (2019). Smart Shoes: Walking Towards a Better Future. International Journal of Engineering Research & Technology, 8(7), 328-330. 

  50. Sinclair, J. & Sant, B. (2017). The effects of cross-fit footwear on the kinetics and kinematics of running. Footwear Science, 9(1), 41-48. 

  51. Sinclair, J. & Sant, B. (2018). Effects of High-and Low-Cut Footwear on the Kinetics and 3D Kinematics of Basketball Specific Motions. Journal of Mechanics in Medicine and Biology, 18(1), 1-26. 

  52. Sinclair, J., Bottoms, L., Taylor, P. J. & Mahmood, K. (2017). Effects of shoes on kinetics and kinematics of the squash forward lunge in male players. Kinesiology: International Journal of Fundamental and Applied Kinesiology, 49(2), 178-184. 

  53. Sinclair, J., Brooks, D. & Stainton, P. (2019). Biomechanical effects of a lightweight, sock-style minimalist footwear design during running: a musculoskeletal simulation and statistical parametric mapping approach. Footwear Science, 11(2), 71-83. 

  54. Sinclair, J., Chockalingam, N., Naemi, R. & Vincent, H. (2015). The effects of sport-specific and minimalist footwear on the kinetics and kinematics of three netball-specific movements. Footwear Science, 7(1), 31-36. 

  55. Sinclair, J., Rooney, E., Naemi, R., Atkins, S. & Chockalingam, N. (2017). Effects of footwear variations on three-dimensional kinematics and tibial accelerations of specific movements in American football. Journal of Mechanics in Medicine and Biology, 17(02), 1-16. 

  56. Sinclair, J., Toth, J. & Hobbs, S. J. (2015). The influence of energy return and minimalist footwear on the kinetics and kinematics of depth jumping in relation to conventional trainers. Kinesiology: International Journal of Fundamental and Applied Kinesiology, 47(1), 11-18. 

  57. Song, J. H., Lee, J. H. & Sung, B. J. (2008). A Comparative Analysis in Kinetics between Spring Shoes and Normal Shoes. Korean Journal of Sport Science, 19(1), 1-8. 

  58. Talaty, M., Patel, S. & Esquenazi, A. (2016). A Randomized Comparison of the Biomechanical Effect of Two Commercially Available Rocker Bottom Shoes to a Conventional Athletic Shoe During Walking in Healthy Individuals. The Journal of Foot and Ankle Surgery, 55(4), 772-776. 

  59. Udofa, A. B., Clark, K. P., Ryan, L. J. & Weyand, P. G. (2019). Running ground reaction forces across footwear conditions are predicted from the motion of two body mass components. Journal of Applied Physiology, 126(5), 1315-1325. 

  60. Wegener, C., Greene, A., Burns, J., Hunt, A. E., Vanwanseele, B. & Smith, R. M. (2015). In-shoe multi-segment foot kinematics of children during the propulsive phase of walking and running. Human Movement Science, 39(1), 200-211. 

  61. Wei, Q., Wang, Z., Woo, J., Liebenberg, J., Park, S. K., Ryu, J. & Lam, W. K. (2018). Kinetics and perception of basketball landing in various heights and footwear cushioning. PloS One, 13(8), 1-9. 

  62. Yeo, M. W., Lee, S. D. & Lee, B. H. (2006). Comparison of functionality through ergonomic evaluation of functional momentum increased shoes. Journal of the Ergonomics Society of Korea, 537-540. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로