$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.52 no.7, 2020년, pp.1579 - 1586  

Murthy, A. Ramachandra (CSIR-Structural Engineering Research Centre) ,  Muthu Kumaran, M. (CSIR-Structural Engineering Research Centre) ,  Saravanan, M. (CSIR-Structural Engineering Research Centre) ,  Gandhi, P. (CSIR-Structural Engineering Research Centre)

Abstract AI-Helper 아이콘AI-Helper

Dissimilar metal joints (DMJs) are more common in the application of piping system of many industries. A 2- D and 3-D finite element analysis (FEA) is carried out on dissimilar metal Single Edged Notch Bending (DMSENB) specimens fabricated from ferritic steel, austenitic steel and Inconel - 182 allo...

주제어

참고문헌 (41)

  1. Bin Qiang, Xin Wang, Ductile crack growth behaviors at different locations of a weld joint for an X80 pipeline steel: a numerical investigation using GTN models, Eng. Fract. Mech. 213 (2019) 264-279, https://doi.org/10.1016/j.engfracmech.2019.04.009. 

  2. M.K. Samal, M. Seidenfuss, E. Roos, K. Balani, Investigation of failure behavior of ferritic-austenitic type of dissimilar steel welded joints, Eng. Fail. Anal. 18 (2011) 999-1008, https://doi.org/10.1016/j.engfailanal.2010.12.011. 

  3. H.T. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint, Mater. Des. 44 (2013) 179-189, https://doi.org/10.1016/j.matdes.2012.07. 067. 

  4. Sachin Kumar, I.V. Singh, B.K. Mishra, XFEM simulation of stable crack growth using J-R curve under finite strain plasticity, Int. J. Mech. Mater. Des. 10 (2014) 165-177, https://doi.org/10.1007/s10999-014-9238-1. 

  5. Haitao Wang, Guozhen Wang, Fuzhen Xuan, Changjun Liu, Shantung Tu, Local mechanical properties and microstructures of Alloy52M dissimilar metal welded joint between A508 ferritic steel and 316L stainless steel, Adv. Mater. Res. 509 (2012) 103-110, https://doi.org/10.4028/www.scientific.net/AMR.509.103. 

  6. H.T. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint, Nucl. Eng. Des. 241 (2011) 3234-3243, https://doi.org/10.1016/j.nucengdes.2011.05.010. 

  7. B. Younise, M. Rakin, N. Gubeljak, B. Medjob, A. Sedmak, Effect of material heterogeneity and constraint conditions on ductile fracture resistance of welded joint zones - micromechanical assessment, Eng. Fail. Anal. 82 (2017) 435-445, https://doi.org/10.1016/j.engfailanal.2017.08.006. 

  8. K. Karthick, S. Malarvizhi, V. Balasubramanian, S.A. Krishnan, G. Sasikala, Shaju K. Albert, Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels, Nucl. Eng. Technol. 50 (2018) 116-125, https://doi.org/10.1016/j.net.2017.10.003. 

  9. Primoz Stefanea, Sameera Naib, Stijn Hertele, Wim De Waele, Nenad Gubeljak, Crack tip constraint analysis in welded joints with pronounced strength and toughness heterogeneity, Theor. Appl. Fract. Mech. 103 (2019) 102293, https://doi.org/10.1016/j.tafmec.2019.102293. 

  10. K. Fan, G.Z. Wang, F.Z. Xuan, S.T. Tu, Local fracture resistance behavior of interface regions in a dissimilar metal welded joint, Eng. Fract. Mech. 136 (2015) 279-291, https://doi.org/10.1016/j.engfracmech.2015.02.007. 

  11. Ad Bakker, Elastic-plastic fracture mechanics analysis of an SENB specimen, Int. J. Press. Vessel. Pip. 10 (1982), https://doi.org/10.1016/0308-0161(82)90004-7. . 

  12. J. Xu, Z.L. Zhang, E. Ostby, B. Nyhus, D.B. Sun, Effects of crack depth and specimen size on ductile crack growth of SENT and SENB specimens for fracture mechanics evaluation of pipeline steels, Int. J. Press. Vessel. Pip. 86 (2009) 787-797, https://doi.org/10.1016/j.ijpvp.2009.12.004. 

  13. J. Yang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain, Fatigue Fract. Eng. M. 36 (2012) 504-514, https://doi.org/10.1111/ffe.12019. 

  14. J. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Derivation of constraint-dependent J-R curves based on modified T-stress parameter and GTN model for a low alloy steel, Int. J. Fract. 183 (2013) 155-168, https://doi.org/10.1007/s10704-013-9884-6. 

  15. J. Yang, G.Z. Wang, F.Z. Xuan, S.T. Tu, C.J. Liu, An experimental investigation of in-plane constraint effect on local fracture resistance of a dissimilar metal welded joint, Mater. Des. 53 (2014) 611-619, https://doi.org/10.1016/j.matdes.2013.07.058. 

  16. J. Yang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint, Eng. Fract. Mech. 115 (2014) 296-307, https://doi.org/10.1016/j.engfracmech.2013.11.018. 

  17. C.A. Della Rovere, C.R. Ribeiro, R. Silva, N.G. Alcantara, S.E. Kuri, Local mechanical properties of radial friction welded supermartensitic stainless steel pipes, Mater. Des. 56 (2014) 423-427, https://doi.org/10.1016/j.matdes.2013.11.020. 

  18. Marco Gonzalez, Paulo Teixeira, Jeanette Gonzalez, Raul Machado, Numerical analysis of fracture mechanics of SENB specimens prepared from HDPE pipes, in: Proceedings of the ASME 2014 Pressure Vessels & Piping Conference, California, USA, 2014, https://doi.org/10.1115/PVP2014-28718. July 20-24. 

  19. M.Y. Mu, G.Z. Wang, F.Z. Xuan, S.T. Tu, Unified correlation of in-plane and out-of-plane constraints with cleavage fracture toughness, Theor. Appl. Fract. Mech. 80 (2015) 121-132, https://doi.org/10.1016/j.tafmec.2015.10.005. 

  20. K. Fan, G.Z. Wang, F.Z. Xuan, S.T. Tu, Local failure behavior of a dissimilar metal interface region with mechanical heterogeneity, Eng. Fail. Anal. 59 (2016) 419-433, https://doi.org/10.1016/j.engfailanal.2015.11.005. 

  21. Jin Weon Kim, Myung Rak Choi, Yun Jae Kim, Effect of loading rate on the fracture behavior of nuclear piping materials under cyclic loading conditions, Nucl. Eng. Technol. 48 (2016) 1376-1386, https://doi.org/10.1016/j.net.2016.06.006. 

  22. W. Musraty, B. Medjo, N. Gubeljak, A. Likeb, I. Cvijovic-Alagic, A. Sedmak, M. Rakin, Ductile fracture of pipe-ring notched bend specimens - micromechanical analysis, Eng. Fract. Mech. 175 (2017) 247-261, https://doi.org/10.1016/j.engfracmech.2017.01.022. 

  23. Jie Yang, Lei Wang, Fracture mechanism of cracks in the weakest location of dissimilar metal welded joint under the interaction effect of in-plane and out-of-plane constraints, Eng. Fract. Mech. 192 (2018) 12-23, https://doi.org/10.1016/j.engfracmech.2018.02.008. 

  24. Jiankai Tang, Liu Zheng, Shouwen Shi, Xu Chen, Evaluation of fracture toughness in different regions of weld joints using unloading compliance and normalization method, Eng. Fract. Mech. 195 (2018) 1-12, https://doi.org/10.1016/j.engfracmech.2018.03.022. 

  25. Dai Yue, Jie Yang, Lei Wang, Effect range of the material constraint-II, Interface crack, Metals 9 (1-10) (2019) 696, https://doi.org/10.3390/met9060696. 

  26. B. Vieille, J.D. Pujols Gonzalez, C. Bouvet, Prediction of the ultimate strength of quasi-isotropic TP-based laminates from tensile and compressive fracture toughness at high temperature, Compos. B Eng. 164 (2019) 437-446, https://doi.org/10.1016/j.compositesb.2019.01.056. 

  27. Jian-Ping Zuo, Yu-Lin Li, Cunhui Liu, Hai-yan Liu, Jintao Wang, Hong-tao Li, Lei Liu, Meso-fracture mechanism and its fracture toughness analysis of Longmaxi shale including different angles by means of M-SENB tests, Eng. Fract. Mech. 215 (2019) 178-192, https://doi.org/10.1016/j.engfracmech.2019.05.009. 

  28. Junnan Lv, Li Yu, Wei Du, Qun Li, Theoretical approach of characterizing the crack-tip constraint effects associated with material's fracture toughness, Arch. Appl. Mech. 88 (2018) 1637-1656, https://doi.org/10.1007/s00419-018-1392-8. 

  29. J. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Constraint-Dependent J-R curves of a dissimilar metal welded joint for connecting pipe-nozzle of nuclear pressure vessel, J. Press. Vessel Technol. 137 (1-8) (2014), 021405, https://doi.org/10.1115/1.4028993. 

  30. E. John, Srawley, Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimen, Int. J. Fract. 12 (1976) 475-476, https://doi.org/10.1007/BF00032844. 

  31. B. Moran, C.F. Shih, Crack tip and associated domain integrals from momentum and energy balance, Eng. Fract. Mech. 27 (1987) 615-642, https://doi.org/10.1016/0013-7944(87)90155-X. 

  32. C.F. Shih, R.J. Asaro, Elastic-plastic analysis of cracks on bimaterial interfaces: Part I - small scale yielding, J. Appl. Mech. 55 (1988) 299-316, https://doi.org/10.1115/1.3173676. 

  33. Osher Stanley, James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988) 12-49, https://doi.org/10.1016/0021-9991(88)90002-2. 

  34. M. Stolarska, D.L. Chopp, N. Moes, T. Belytschko, Modelling crack growth by level sets in the extended finite element method, Int. J. Numer. Methods Eng. 51 (2001) 943-960, https://doi.org/10.1002/nme.201. 

  35. N. Sukumar, D.L. Chopp, B. Moran, Extended finite element method and fast marching method for three-dimensional fatigue crack propagation, Eng. Fract. Mech. 70 (2003) 29-48, https://doi.org/10.1016/S0013-7944(02)00032-2. 

  36. T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45 (1999) 601-620, https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3C601::AID-NME598%3E3.0.CO;2-S. 

  37. ASTM E1820-01, Standard Test Method for Measurement of Fracture Toughness, ASTM International, US, 2001. www.astm.org. 

  38. ASTM E399-17, Standard Test Method for :Linear-Elastic Plane Strain Fracture Toughness $KI_{C}$ of Metallic Materials, ASTM International, US, 2018. www.astm.org. 

  39. Hiroshi Tada, Paul C. Paris, George R. Irwin, The Stress Analysis of Cracks Handbook, third ed., ASME Press, 2000 https://doi.org/10.1115/1.801535. 

  40. S. Kumar, P.K. Singh, K.N. Karn, V. Bhasin, Experimental investigation of local tensile and fracture resistance behavior of dissimilar metal weld joint: SA508 Gr.3 Cl.1 and SA312 Type 304LN, Fatigue Fract. Eng. M. 40 (2016) 190-206, https://doi.org/10.1111/ffe.12484. 

  41. Yu G. Matvienko, Maximum average tangentical stress criterion for prediction of the crack path, Int. J. Fract. 176 (2012) 113-118, https://doi.org/10.1007/s10704-012-9715-1. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로