$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Zinc Undecylenate가 말똥성게(Hemicentrotus pulcherrimus)와 둥근성게(Mesocentrotus nudus)의 배아발생에 미치는 독성 영향
Toxic Effect of Zinc Undecylenate on the Embryogenesis of Sea Urchins Hemicentrotus pulcherrimus and Mesocentrotus nudus 원문보기

한국해양생명과학회지 = Journal of marine life science, v.5 no.2, 2020년, pp.43 - 50  

최훈 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ,  박윤호 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ,  이주욱 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ,  이승민 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ,  최윤석 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ,  황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 살균제, 항진균제 등의 의약품을 포함하여 다양한 목적으로 사용되며, 신방오도료로서의 가능성이 확인된 바 있는 Zinc undecylenate (ZU)를 이용해 연안환경 내 1차 소비자를 대표할 수 있는 성게 2종(H. pulcherrimus, M. nudus)에 대한 독성평가를 실시하였다. 실험결과 ZU에 대한 H. pulcherrimus와 M. nudus의 수정률 EC50은, 각각 11.27 mgl-1과 1.48 mgl-1로 나타났다. 또한, 정상배아 발생률의 EC50은 각각 0.94 mgl-1와 3.78 mgl-1로 나타났으며, NOEC는 0.20 mgl-1, 0.78 mgl-1를 나타내었다. 본 연구에서 도출된 성게 2종과 문헌조사를 통한 연안양식생물 2종의 급성독성결과를 이용하여 Predicted No Effect Concentration (PNEC)를 계산하였다. PNEC 값은 0.0094 mgl-1로 나타났으며, 위와 같은 결과는 해양환경 오염물질에 대한 환경보호전략 수립을 위한 기초자료로 활용될 것이다.

Abstract AI-Helper 아이콘AI-Helper

The aim of this study is toxicity assessment using two types of sea urchins (H. pulcherrimus, M. nudus) that can representative primary consumers in potential coastal environments pollutants, Zinc undecylenate (ZU), which is used for various purposes, such as pharmaceutical agents and anti-bacterial...

주제어

표/그림 (6)

참고문헌 (42)

  1. Adrislaine SM, Raquel AM, Hugo CD, Lia GRD, Eny MV, Michiel AD, Odete R, Mirna HRS. 2018. Acute and chronic toxicity of diuron and carbofuran to the neotropical cladoceran Ceriodaphnia silvestrii. Environ Sci Pollut Res 25: 13335-13346. 

  2. Agatsuma Y. 2001. Ecology of H. pulcherrimus, Pseudocentrotus depressus, and Anthocidaris crassispina in southern Japan. Edible sea urchins: Biology and Ecology. Elsevier Science, Netherlands. 363-374. 

  3. Amara I, Miled W, Slama RB, Ladhari N. 2017. Antifouling processes and toxicity effects of antifouling paints on marine. Environ Toxicol Pharmacol 57: 115-130. 

  4. Bourne N, Ireland J, Stanberry LR, Bernstein DI. 1999. Effect of undecylenic acid as a topical microbicide against genital herpes infection in mice and guinea pigs. Antiviral Res 40: 139-144. 

  5. Bigot S, Daghrir M, Mhann A, Boni G, Pourchet S, Lecamp L, Plasseraud L. 2016. Undecylenic acid:A tunable bio-based synthon for materials applications. Eur Polym J 74: 26-37. 

  6. Chapman J, Hellio C, Sullivan T, Brown R, Russell S, Kiterringham ENL, Regan F. 2014. Bioinspired synthetic macroalgae: examples from nature for antifouling applications. Int Biodeter Bioddegr 86: 6-13. 

  7. Chen L, Qian PY. 2017. Riview on molecular mechanisms of antifouling compounds: an update since 2012. Mar Drugs 15: 264. 

  8. Choi H, Lee JW, Park YH, Lee SM, Choi YS, Heo S, Hwang UK. 2020. Toxic effects of phenanthrene on fertilization and normal embryogenesis rates of Mesocentrotus nudus and Hemicentrotus pulcherrimus. Korean J Envrion Biol 38: 333-342. 

  9. Chretien JH, Esswein JG, Sharpe LM. 1980. Efficacy of undecylenic acid-zinc undecylenate powder in culture positive tinea pedic. Int J Dermatol 19: 51-54. 

  10. Cima F, Ballarin L. 2012. Immunotoxicity in ascidians: Antifouling compounds alternative to organotins III - The case of copper (I) and Irgarol 1051. Chemosphere 89: 19-29. 

  11. Cresswell T, Richards JP, Glegg GA, Readman JW. 2006. The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters. Mar Pollut Bull 52: 1169-1175. 

  12. DeLorenzo ME, Fulton MH. 2012. Comparative risk assessment of permethrin, chlorothalonil, and diuron to coastal aquatic species. Mar Pollut Bull 64: 1291-1299. 

  13. Gu Y, Yu L, Mou J, Wu D, Xu M, Zhou P, Ren Y. 2020. Research Strategies to Develop Environmentally Friendly Marine Anti-fouling Coatings. Mar Drugs 18: 371. https://doi.org/10.3390/md18070371. 

  14. Hardman JG, Limbird LE, Gilman AG. 2001. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed., Pergamon, New York. 1310. 

  15. HMSO. Pesticides 1998: reference book 500. London. UK 

  16. Holt JS. 1993. Mechanisms and agronomic aspects of herbicide resistance. Ann Rev Plant Physiol Plant Mol Biol 44: 203-229. 

  17. Hwang UK, Ryu HM, Choi YH, Lee SM, Kang HS. 2011. Effect of cobalt (II) on the fertilization and embryo development of the sea urchin (Hemicentrotus pulcherrimus). Korean J Envrion Biol 29: 251-257. 

  18. Hwang UK, Kim DH, Ryu HM, Lee JW, Park SY, Han SK. 2014. Effect of bisphenol A on early embryonic development and the expression of Glutathione S-transferase (GST) in the sea urchin (Hemicentrotus pulcherrimus). Korean J Environ Biol 32: 234-242. 

  19. Hwang UK, Choi H, Park YH, Park NY, Jang SJ, Lee SM, Choi YS, Yang JY, Lee JW. 2018. Toxicity assessment of antifouling agent using the survival and population growth rate of marine rotifer, Brachionus plicatilis. Korean J Environ Biol 36: 392-399. 

  20. Hwang UK, Lee JW, Park YH, Heo S, Choi H. 2020. Toxic effects of antifouling agents (diuron and irgarol) on fertilization and normal embryogenesis rates in the sea urchin (Mesocentrotus nudus). Korean J Environ Biol 38: 207-215. 

  21. Johansson P, Eriksson KM, Axelsson L, Black H. 2012. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus). Arch Environ Contam Toxicol 63: 365-377. 

  22. Jung SM. 2012. Development of new antifouling systems based on nontoxic self - polishing copolymer coatings. Soon Chun Hyang University. 

  23. Karlsson J, Ytreberg E, Eklund B. 2010. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environ Pollut 158: 681-687. 

  24. Keiler D, Mann T. 1940. Carbonic anhydrase. Purification and nature of the enzyme. Biochemical Journal 34: 1163. 

  25. Lansdown ABG. 1991. Interspecies variations in response to topical application of selected zinc compounds. Food Chem Toxicol 29: 57-64. 

  26. Lee J, Choi H, Park YH, Lee Y, Heo S, Hwang UK. 2019. Toxic evaluation of phenanthrene and zinc undecylenate using the population growth rates of marine diatom, Skeletonema costatum. Korean J Envrion Biol 37: 372-379. 

  27. Lin MC, Wo HL, Kou HS, Wu SM. 2006. Simple fluorimetric liquid chromatographic method for the analysis of undecylenic acid and zinc undecylenate in pharmaceutical preparations. Journal of Chromatography A 1119: 264-269. 

  28. Manzo S, Buono S, Cremisini C. 2006. Toxic effects of Irgarol and Diuron on sea urchin Paracentrotus lividus Early Development, fertilization, and offspring quality. Arch Environ Contam Toxicol 51: 61-68. 

  29. Ministry of Environment. 2016. Guidelines for procedure and methodology for risk assessment of environmental hazardous factors. Established rule-585. 

  30. Mosmeri H, Bahrami A, Ghafari MD, Jazaeri K. 2019. Increasing in the Extraction Yield of Environmentally Friendly Antifouling Agent from Pseudomonas Aeruginosa MUT3 by Response Surface Methodology (RSM). Iran J Chem Chem Eng 38: 203-214. 

  31. Nacci D, Jackim E, Walsh R. 1986. Comparative evaluation of three rapid marine toxicity tests: Sea urchin early embryo growth test, Sea urchin sperm cell toxicity test and microtox. Environ Toxicol Chem 5: 521-525. 

  32. Nikolov A, Ganchev D. 2010. Effect of zinc undecylenates on plant pathogenic fungi. Bulg J Agric Sci 16: 220-226. 

  33. OSPAR. 2010. Assessment of the Impact of Shipping on the Marine Environment. Quality Status Report 2010. OSPAR Commission, London, UK. 

  34. Ryu TK, Kim JK, Kim KT, Lee JW, Kim JE, Cho JG, Yoon JH, Lee JA, Kim PJ, Ryu JS. 2018. Encironmental risk assessment for Invermectin, Praziquantel, Tamiflu and Triclosan. J Environ Health Sci 44: 196-203. 

  35. Thomas KV. 2001. The environmental fate and behaviour of antifouling paint booster biocides. Biofouling 17: 73-86. 

  36. Voulvoulis N, Scrimshaw MD, Lester JN. 2000. Occurrence of four biocides utilized in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar Pol Bullt 40: 938-946. 

  37. Voulvoulis N, Scrimshaw MD, Lester JN. 2002, Comparative environmental assessment of biocides used in antifouling paints. Chemosphere 47: 789-795. 

  38. Yamada H. 2007. Behaviour, occurrence, and aquatic toxicity of new antifouling biocides and preliminary assessment of risk to aquatic ecosystems. Bull Fish Res Agen 21: 31-45. 

  39. Yang IM, Kang MJ, Kim SM, Kim HA. 2020. Assessing the reliability on anti-fouling and the seawater-erosion of siliconebased anti-fouling coating. Journal of Applied Reliability 20: 63-71. 

  40. Yonehara Y. 2000. Recent topics on marine antifouling coatings. Bull Soc Sea Water Sci Jpn 54: 7-12. 

  41. Yu CM. 1998. A study on the effect of heavy metals on embryos formation of sea urchins. Kor J Env Hlth Soc 24: 6-10. 

  42. Ytreberg E, Karlsson J, Eklund B. 2010. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci Total Environ 408: 2459-2466. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로