$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Prediction of TBM performance based on specific energy

Geomechanics & engineering, v.22 no.6, 2020년, pp.489 - 496  

Kim, Kyoung-Yul (Structural and Seismic Technology Group, Next Generation Transmission & Substation Laboratory, KEPCO Research Institute(KEPRI)) ,  Jo, Seon-Ah (Structural and Seismic Technology Group, Next Generation Transmission & Substation Laboratory, KEPCO Research Institute(KEPRI)) ,  Ryu, Hee-Hwan (Structural and Seismic Technology Group, Next Generation Transmission & Substation Laboratory, KEPCO Research Institute(KEPRI)) ,  Cho, Gye-Chun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology(KAIST))

Abstract AI-Helper 아이콘AI-Helper

This study proposes a new empirical model to effectively predict the excavation performance of a shield tunnel boring machine (TBM). The TBM performance is affected by the geological and geotechnical characteristics as well as the machine parameters of TBM. Field penetration index (FPI) is correlate...

Keyword

참고문헌 (25)

  1. Barton, N. (1999), "TBM performance estimation in rock using Q(TBM)", Tunn. Tunn. Int., 31(9), 30-34. 

  2. Barton, N. (2000), TBM Tunneling in Jointed and Faulted Rock, A.A. Balkema, Rotterdam, The Netherlands. 

  3. Benato, A. and Oreste, P. (2015), "Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics", Int. J. Rock Mech. Min. Sci., 74, 119-127. https://doi.org/10.1016/j.ijrmms.2014.12.007. 

  4. Bieniawski, R.Z.T., Celada, B., Tardaguila, I. and Rodrigues, A. (2012), "Specific energy of excavation in detecting tunnelling conditions ahead of TBMs", Tunn. Tunn. Int., 26-29. 

  5. Blindheim, O.T. (1979), "Boreability predictions for tunneling", Ph.D. Dissertation, The Norwegian Institute of Technology, Trondheim, Norway. 

  6. Bruland, A. (1998), "Hard rock tunnel boring", Ph.D. Dissertation, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. 

  7. Celada, B., Galera, J.M., Munoz, C. and Tardaguila, I. (2009), "The use of the specific drilling energy for rock mass characterization and TBM driving during tunnel construction", Proceedings of the ITA-AITES World Tunnel Congress, Budapest, Hungary, May. 

  8. Chang, S., Choi, S., Bae, G. and Jeon, S. (2006a), "Performance prediction of TBM disc cutting on granitic rock by the linear cutting test", Tunn. Undergr. Sp. Technol., 21(3-4), 271. 

  9. Chang, S., Choi, S., Lee, S., Bae, G. and Jeon, S. (2006b), "Derivation of an optimum prediction model of a TBM cutterhead equipped with disc cutters", Proceedings of the KTA 2006 Symposium, Seoul, South Korea, October. 

  10. Delisio, A. and Zhao, J. (2014), "A new model for TBM performance prediction in blocky rock conditions", Tunn. Undergr. Sp. Technol., 43, 440-452. https://doi.org/10.1016/j.tust.2014.06.004 

  11. Delisio, A., Zhao, J. and Einstein, H.H. (2013), "Analysis and prediction of TBM performance in blocky rock conditions at the Lotschberg Base Tunnel", Tunn. Undergr. Sp. Technol., 33, 131-142. https://doi.org/10.1016/j.tust.2012.06.015 

  12. Farrokh, E., Rostami, J. and Laughton, C. (2012), "Study of various models for estimation of penetration rate of hard rock TBMs", Tunn. Undergr. Sp. Technol., 30, 110-123. https://doi.org/10.1016/j.tust.2012.02.012 

  13. Gong, Q.M. and Zhao, J. (2009), "Development of a rock mass characteristics model for TBM penetration rate prediction", Int. J. Rock Mech. Min. Sci., 46(1), 8-18. https://doi.org/10.1016/j.ijrmms.2008.03.003. 

  14. Hassanpour, J., Ghaedi Vanani, A.A., Rostami, J. and Cheshomi, A. (2016), "Evaluation of common TBM performance prediction models based on field data form the second lot of Zagros water conveyance tunnel (ZWCT2)", Tunn. Undergr. Sp. Technol., 52, 147-156. https://doi.org/10.1016/j.tust.2015.12.006. 

  15. Hassanpour, J., Rostami, J. and Zhao, J. (2011), "A new hard rock TBM performance prediction model for project planning", Tunn. Undergr. Sp. Technol., 26, 595-603. https://doi.org/10.1016/j.tust.2011.04.004. 

  16. Minh, V.T., Katushin, D., Antonov, M. and Veinthal, R. (2017), "Regression models and fuzzy logic prediction of TBM penetration rate", Open Eng., 7(1), 60-68. https://doi.org/10.1515/eng-2017-0012. 

  17. Mobarral, Y., Anbaranil, M.R. and Akbaril, E. (2013), "A statistical model for the prediction of TBM penetration rate using rock mass characteristics in the TBM-driven Golab Water Transfer Tunnel", Proceedings of the 4th International Joint Conference on Advances in Engineering and Technology-AET 2013, NCR, India, December. 

  18. Rostami, J. (1997), "Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure", Ph.D. Dissertation, Colorado School of Mines, Golden, Colorado, U.S.A. 

  19. Rostami, J. and Ozdemir, L. (1993), "A new model for performance prediction of hard rock TBMs", Proceedings of the Rapid Excavation Tunneling Conference (RETC), Boston, Massachusetts, U.S.A., June. 

  20. Salimi, A., Rostami, J., Moormann, C. and Delisio, A. (2016), "Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs", Tunn. Undergr. Sp. Technol., 58, 236-246. https://doi.org/10.1016/j.tust.2016.05.009. 

  21. Teale, R. (1965), "The concept of specific energy in rock drilling", Int. J. Rock Mech. Min. Sci., 2(1), 57-73. https://doi.org/10.1016/0148-9062(65)90022-7. 

  22. Yagiz, S. (2002), "Development of rock fracture and brittleness indices to quantify the effects of rock mass features and toughness in the CSM model basic penetration for hard rock tunneling machines", Ph.D. Dissertation, Colorado School of Mines, Golden, Colorado, U.S.A. 

  23. Yagiz, S. (2008), "Utilizing rock mass properties for predicting TBM performance in hard rock condition", Tunn. Undergr. Sp. Technol., 23(3), 326-339. https://doi.org/10.1016/j.tust.2007.04.011. 

  24. Zhang, G., Tan, J., Zhang, L. and Xiang, Y. (2015), "Linear regression analysis for factors influencing displacement of high-filled embankment slopes", Geomech. Eng., 8(4), 511-521. https://doi.org/10.12989/gae.2015.8.4.511. 

  25. Zhou, W., Li, S.L., Ma, G., Chang, X.L., Cheng, Y.G. and Ma, X. (2016), "Assessment of the crest cracks of the Pubugou rockfill dam based on parameters back analysis", Geomech. Eng., 11(4), 571-585. https://doi.org/10.12989/gae.2016.11.4.571. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로