$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 규조류 및 유산균 첨가 사료 공급에 따른 넙치(Paralichthys olivaceus)의 성장 및 비특이적 면역 촉진 반응에 미치는 영향
Effect of Dietary Supplementation of Diatom Melosira nummuloides and Lactic Acid Bacteria Lactobacillus plantarum on the Growth and Immune Stimulation Responses of Olive Flounder Paralichthys olivaceus 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.53 no.4, 2020년, pp.597 - 605  

노윤혜 (제주대학교 해양생명과학과) ,  김기혁 (제주대학교 해양생명과학과) ,  문혜나 (제주대학교 해양생명과학과) ,  고경민 (어업회사법인(주) 제이앤씨(JNC bio)) ,  여인규 (제주대학교 해양생명과학과)

Abstract AI-Helper 아이콘AI-Helper

The diatom Melosira nummuloides is a microalga that is widely distributed in freshwater and seawater is used is used in the production of silicon and fucoxanthin. The objective of this experimental study was to determine the effects of diatom powder on the physiology of olive flounder Paralichthys o...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 다양한 성분을 함유하고 있는 규조류의 양식넙치 사료첨가제로서의 효능을 평가하기 위하여, 제주 용암해수에서 분리 배양한 M. nummuloides 및 유산균(Latobacillus plantarum)을 사료에 첨가하여 넙치(Paralichthys olivaceus) 치어의 성장률, 사료효율, 폐사율, 항산화 활성, 비특이적 면역 분석 및 면역관련 유전자 분석을 실시하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
규조류는 분류학상으로 어디에 속하는가? 한편, 규조류(Bacillariophyceae)는 미세조류(microalgae) 그룹의 식물 플랑크톤 중 황갈조식물문(Chrysophyta)에 속하며, 바다 및 호수에서 생활, 번식한다(Li et al., 2014).
Melosira nummuloides은 무엇을 함유하고 있는가? , 2007). 그 중 해양 규조인 Melosira nummuloides는 폴리 불포화 지방산(polyunsaturated fatty acids, PUFA), 단가 불포화지방산(monounsaturated fatty acids, MUFA), 오메가-3 (ω-3), eicosapentaenoic acid (EPA) 및 폴리페놀(polyphenol)을 함유하고 있어 동물 및 어류 영양에 이용가능한 자원으로 보고되어 있다(Li et al.,2016).
M. nummuloides가 기존의 다른 규조류에 비하여 규소 등에 의한 생리활성 기능이 높을 것으로 추측되는 이유는 무엇인가? 특히 Melosira nummuloides는 제주용암해수에서 분리되어 대량생산이 가능하며, 제주 용암해수에 용해되어 있는 규소 Si(OH)4와 마그네슘(Mg2+)을 주로 이용하여 세포벽(골격)을 구성하는 규조류(Diatoms)의 규소함량은 200,000 ppm/tissue로 모든 동식물에서 가장 높은 것으로 알려져 있다(JNC, 2020). 이에 따라 기존의 다른 규조류에 비하여 규소 등에 의한 생리활성 기능이 높을 것으로 추측된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (45)

  1. Adel M, Yeganeh S, Dadar M, Sakai M and Dawood MA. 2016. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish Shellfish Immunol, 56, 436-444. https://doi.org/10.1016/j.fsi.2016.08.003. 

  2. Basha PS and Rani AU. 2003. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol Environ Saf 56, 218-221. https://doi.org/10.1016/S0147-6513(03)00028-9. 

  3. Bols NC, Brubacher JL, Ganassin RC and Lee LE. 2001. Ecotoxicology and innate immunity in fish. Dev Comp Immunol 25, 853-873. https://doi.org/10.1016/S0145-305X(01)00040-4 

  4. Carlisle EM. 1972. Silicon: an essential element for the chick. Science 178, 619-621. https://doi.org/10.1111/j.1753-4887.1982.tb05313.x. 

  5. Carlisle EM. 1982. The nutritional essentiality of silicon. Nutr Rev 40, 193-198. https://doi.org/10.1111/j.1753-4887.1982.tb05307.x. 

  6. Chen YC. 2007. Immobilization of twelve benthic diatom species for long-term storage and as feed for post-larval abalone Haliotis diversicolor. Aquaculture 263, 97-106. https://doi.org/10.1016/j.aquaculture.2006.12.008. 

  7. Cerezuela R, Guardiola FA, Gonzalez P, Meseguer J and Esteban MA. 2012. Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish Shellfish Immunol 33, 342-349. https://doi.org/10.1016/j.fsi.2012.05.004. 

  8. Dalton DA, Langeberg L and Treneman NC. 1993. Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol Plant 87, 365-370. https://doi.org/10.1111/j.1399-3054.1993.tb01743.x. 

  9. Giulio RT, Washburn PC, Wenning RJ, Winston GW and Jewell CS. 1989. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ Toxicol Chem 8, 1103-1123. https://doi.org/10.1002/etc.5620081203. 

  10. Epstein E. 1994. The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91, 11-17. https://doi.org/10.1073/pnas.91.1.11. 

  11. Forman HJ and Fridovich I. 1973. Superoxide dismutase: a comparison of rate constants. Arch Biochem Biophys 158, 396-400. https://doi.org/10.1016/0003-9861(73)90636-X. 

  12. Gordon N, Neori A, Shpigel M, Lee J and Harpaz S. 2006. Effect of diatom diets on growth and survival of the abalone Haliotis discus hannai postlarvae. Aquaculture 252, 225-233. https://doi.org/10.1016/j.aquaculture.2005.06.034. 

  13. Gibson GR and Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125, 1401-1412. https://doi.org/10.1093/jn/125.6.1401. 

  14. Grinde B. 1989. Lysozyme from rainbow trout, Salmo gairdneri Richardson, as an antibacterial agent against fish pathogens. J Fish Dis 12, 95-104. https://doi.org/10.1111/j.1365-2761.1989.tb00281.x. 

  15. Guo B, Liu B, Yang B, Sun P, Lu X, Liu J and Chen F. 2016. Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Mar Drugs 14, 125. https://doi.org/10.3390/md14070125. 

  16. Hoseinifar SH, Zou HK, Doan HV, Harikrishnan R, Yousefi M, Paknejad H and Ahmadifar E. 2019. Can dietary jujube (Ziziphus jujuba Mill.) fruit extract alter cutaneous mucosal immunity, immune related genes expression in skin and growth performance of common carp Cyprinus carpio?. Fish Shellfish Immunol 94, 705-710. https://doi.org/10.1016/j.fsi.2019.09.016. 

  17. Jin XH, Zheng LL, Song MR, Xu WS, Kou YN, Zhou Y, Zhang LW, Zhu YN, Wan B, Wei ZY and Zhang GP. 2018. A nano silicon adjuvant enhances inactivated transmissible gastroenteritis vaccine through activation the Toll-like receptors and promotes humoral and cellular immune responses. Nanomedicine 14, 1201-1212. https://doi.org/10.1016/j.nano.2018.02.010. 

  18. Kang KH, Qian ZJ, Ryu BM and Kim SK. 2011. Characterization of growth and protein contents from microalgae Navicula incerta with the investigation of antioxidant activity of enzymatic hydrolysates. Food Sci Biotechnol 20, 183-191. https://doi.org/10.1007/s10068-011-0025-6. 

  19. Kang YS, Kim YM, Park KI, Cho SM, Choi KS and Cho MJ. 2006. Analysis of EST and lectin expressions in hemocytes of Manila clams Ruditapes philippinarum (Bivalvia: Mollusca) infected with Perkinsus olseni. Dev Comp Immunol 30, 1119-1131. https://doi.org/10.1016/j.dci.2006.03.005. 

  20. Kim JH, Jeong MH, Jun JC and Kim TI. 2014. Changes in hematological biochemical and non-specific immune parameters of olive flounder Paralichthys olivaceus, following starvation. Asian-Australas J Anim Sci 27, 1360-1367. http://dx.doi.org/10.5713/ajas.2014.14110. 

  21. Li A, Cai J, Pan J, Wang,Y, Yue Y and Zhang D. 2014. Multilayer hierarchical array fabricated with diatom frustules for highly sensitive bio-detection applications. J Micromech Microeng 24. https://doi.org/10.1088/0960-1317/24/2/025014. 

  22. Li Y, Xiao G, Mangott A, Kent M and Pirozzi I. 2016. Nutrient efficacy of microalgae as aquafeed additives for the adult black tiger prawn, Penaeus monodon. Aquac Res 47, 3625-3635. https://doi.org/10.1111/are.12815. 

  23. Magnadottir B. 2006. Innate immunity of fish (overview). Fish Shellfish Immunol 20, 137-151. https://doi.org/10.1016/j.fsi.2004.09.006. 

  24. Martha RB, Carlos A, Norma E, Ylenia M and Felipe AV. 2014. Dietary administration of microalgae alone or supplemented with Lactobacillus sakei affects immune response and intestinal morphology of Pacific red snapper Lutjanus peru. Fish Shellfish Immunol 40, 208-216. https://doi.org/10.1016/j.fsi.2014.06.032. 

  25. Martinez-Alvarez RM, Morales AE and Sanz A. 2005. Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 15, 75-88. https://doi.org/10.1007/s11160-005-7846-4. 

  26. MIFAFF (Ministry for Food Agriculture Forestry and Fisheries). 2003. Statistical yearbook of maritime affairs and fisheries. Ministry for Food Agriculture Forestry and Fisheries Report, MIFAFF, Gwacheon, Korea. 

  27. Minagawa S, Hikima JI, Hirono I, Aoki T and Mori H. 2001. Expression of Japanese flounder c-type lysozyme cDNA in insect cells. Dev Comp Immunol 25, 439-445. https://doi.org/10.1016/S0145-305X(01)00013-1. 

  28. Mistry AC, Honda S and Hirose S. 2001. Structure, properties and enhanced expression of galactose-binding C-type lectins in mucous cells of gills from freshwater Japanese eels (Anguilla japonica). Biochem J 360, 107-115. https://doi.org/10.1042/bj3600107. 

  29. Nelson DM, Treguer P, Brzezinski MA, Leynaert A and Queguiner B. 1995. Production and dissolution of biogenic silica in the ocean - revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9, 359-372. https://doi.org/10.1029/95GB01070. 

  30. Onitsuka T, Kawamura T, Ohashi S, Horii T and Watanabe Y. 2007. Dietary value of benthic diatoms for post-larval abalone Haliotis diversicolor associated with feeding transitions. Fish Sci 73, 295-302. https://doi.org/10.1111/j.1444-2906.2007.01335.x. 

  31. Palic D, Andreasen CB, Menzel BW and Roth JA. 2005. A rapid, direct assay to measure degranulation of primary granules in neutrophils from kidney of fathead minnow (Pimephales promelas Rafinesque, 1820). Fish Shellfish Immunol 19, 217-227. https://doi.org/10.1016/j.fsi.2004.12.003. 

  32. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ and Hampson GN. 2003. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32, 127-135. https://doi.org/10.1016/S8756-3282(02)00950-X. 

  33. Rabinovich GA and Gruppi A. 2005. Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease. Parasite Immunol 27, 103-114. https://doi.org/10.1111/j.1365-3024.2005.00749.x. 

  34. Robinson MJ, Sancho D, Slack EC, Landmann SL and Sousa CR. 2006. Myeloid C-type lectins in innate immunity. Nat Immunol 7, 1258. https://doi.org/10.1038/ni1417. 

  35. Russell RF, McDonald JU, Lambert L and Tregoning J. S. 2016. Use of the microparticle nanoscale silicon dioxide as an adjuvant to boost vaccine immune responses against influenza virus in neonatal mice. J Virol 90, 4735-4744. https://doi.org/10.1128/JVI.03159-15. 

  36. Rico H, Lago JL, Hernandez E, Villa LF, Atrio AS, Seco C and Gervas JJ. 2000. Effect of silicon supplement on osteopenia induced by ovariectomy in rats. Calcif Tissue Int 66, 53-55. https://doi.org/10.1007/s002230050010. 

  37. Schwarz K and Milne DB. 1972. Growth-promoting effects of silicon in rats. Nature 239, 333. https://doi.org/10.1038/239333a0. 

  38. Seaborn CD, Anderson MB and Nielsen FH. 2002. An interaction between dietary silicon and arginine affects immune function indicated by con-A-induced DNA synthesis of rat splenic T-lymphocytes. Biol Trace Elem Res 87, 133-142. https://doi.org/10.1385/BTER:87:1-3:133. 

  39. Smith GS and Lumsden JH. 1983. Review of neutrophil adherence, chemotaxis, phagocytosis and killing. Vet Immunol Immunopathol 4, 177-236. https://doi.org/10.1016/0165-2427(83)90058-2. 

  40. Smith P, Hiney MP and Samuelsen OB. 1994. Bacterial resistance to antimicrobial agents used in fish farming: a critical evaluation of method and meaning. Annu Rev Fish Dis 4, 273-313. http://dx.doi.org/10.1016/0959-8030(94)90032-9. 

  41. Srikanth S and Gwack Y. 2013. Molecular regulation of the pore component of CRAC channels, Orai1. Curr Top Membr 71, 181-207. https://doi.org/10.1016/B978-0-12-407870-3.00008-1. 

  42. Suzuki Y, Tasumi S, Tsutsui S, Okamoto M and Suetake H. 2003. Molecular diversity of skin mucus lectins in fish. Comp Biochem Physiol Biochem Mol Biol 136, 723-730. https://doi.org/10.1016/S1096-4959(03)00178-7. 

  43. Woesz A, Weaver JC, Kazanci M, Dauphin Y, Aizenberg J, Morse DE and Fratzl P. 2006. Micromechanical properties of biological silica in skeletons of deep-sea sponges. J Mater Res 21, 2068-2078. https://doi.org/10.1557/jmr.2006.0251. 

  44. Ye X, Zhang L, Tian Y, Tan A, Bai J and Li S. 2010. Identification and expression analysis of the g-type and c-type lysozymes in grass carp Ctenopharyngodon idellus. Dev Comp Immunol 34, 501-509. https://doi.org/10.1016/j.dci.2009.12.009 

  45. Yu W, Wen G, Lin H, Yang Y, Huang X, Zhou C, Zhang Z, Duan Y and Li T. 2018. Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of Coral trout Plectropomus leopardus (Lacepede, 1802). Fish Shellfish Immunol 74, 649-655. https://doi.org/10.1016/j.fsi.2018.01.024. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로