$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

하계 한반도 해역(동해, 서해, 남해 및 동중국해)의 하위영양단계 먹이망 구조 : 탄소 및 질소 안정동위원소 활용
Food-Web Structures in the Lower Trophic Levels of the Korean Seas (East Sea, West Sea, South Sea, and East China Sea) during the Summer Season: Using Carbon and Nitrogen Stable Isotopes 원문보기

海洋環境安全學會誌 = Journal of the Korean society of marine environment & safety, v.26 no.5, 2020년, pp.493 - 505  

민준오 (한양대학교 해양융합공학과) ,  이창화 (부산대학교 해양학과) ,  윤석현 (국립수산과학원)

초록
AI-Helper 아이콘AI-Helper

본 연구는 2019년 8월 한반도 주변해역(동해, 서해, 남해, 동중국해)에서 탄소 및 질소 안정동위원소 기법을 활용하여 하위영양 단계에서의 먹이망 구조를 파악하였다. 입자성 유기물(POM)의 δ13C 범위는 -26.18 ~ 20.61 ‰, δ15N 범위는 5.36 ~ 15.20 ‰의 넓은 범위를 보였다. POM과 각 생물별 개체군 사이의 δ13C 분별작용의 결과는 대부분 micro-POM을 섭식하는 것으로 확인하였으나 해역 간 차이를 보였다. 각 생물별 영양단계는 chaetognaths (3.40±0.61)가 가장 높은 영양단계에 있음을 확인하였다. 동위원소 혼합모델을 적용한 결과에서 chaetognaths의 먹이원으로 copepods (13 ~ 48 %)와 euphausiids (20 ~ 51 %)가 가장 높은 기여도를 나타냈다. 본 연구결과 각 해역별 먹이원의 제한적 공급 및 다양성의 차이가 먹이망 구조 및 각 생물별 동위원소 비에 영향을 미친 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Food web structures in the lower trophic levels of the seas around the Korean peninsula were investigated in August 2019 using stable isotopes. There were variable ratios of the carbon (-26.18 ~ -20.61 ‰) and nitrogen stable (5.36 ~ 15.20 ‰) isotopes in the particulate organic matter (...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 따라서 본 연구에서는 한반도 주변 연근해역인 동해, 서해, 남해, 동중국해의 각 생물별 탄소 및 질소 안정동위원소를 비교 분석하였고, 각 해역별 먹이망 구조 및 영양단계를 파악하여 물질순환 및 에너지 흐름을 파악하는데 목적이 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
먹이망이란? 먹이망(food web)은 기초생산자(primary producer)에 의해 합성된 에너지가 상위 영양단계(high trophic level)로 전달되는 과정을 의미하며 해양생태계(marine ecosystem)를 구성하는 기본 기능이다(Krumins et al., 2013; Schückel et al.
Copepods의 역할은? Copepods는 해양 동물플랑크톤 주요 구성요소이며 탄소순환과 동물 플랑크톤 군집 역학에 중요한 역할을 한다 (Mauchline 1998). 또한 pico-, micro size의 플랑크톤에 대한 크기별 선택적 섭식은 영양연쇄효과를 통해 낮은 영양 수준에서 개체군의 생물량 및 먹이 구조에 영향을 줄 수 있다 (Vargas et al.
우리나라 해역의 해양생태계를 보존하고 잠재적 어업 생산력을 유지하기 위해서 먹이망 구조의 변화 및 각 해역별 먹이원 특성을 이해하는 것은 중요한 이유는? 최근 기후변화가 가속화됨에 따라 해양생태계 시스템이 변화되고 있으며 특히 해양의 수온 변화는 어획 대상종의 구성 변화, 어군의 서식지 이동, 어류의 성장률 등 어업생산에 있어 중요한 영향을 미치고 있음이 보고되고 있다(Lu and Lee, 2014). 이러한 변화는 일차 생산력의 분포와 속도에 변화를 주어 일차생산자로부터 먹이망을 통해 상위 소비자에게 연결되는 과정에 변화를 야기할 수 있으며(Kang et al., 2012), 해양생태계의 물질순환 및 어획량 감소에 영향을 미칠 수 있다(Eom et al., 2015). 따라서 우리나라 해역의 해양생태계를 보존하고 잠재적 어업 생산력을 유지하기 위해서는 먹이망 구조의 변화 및 각 해역별 먹이원 특성을 이해하는 것은 중요하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (49)

  1. Chang, K. H., D. I. Seo, S. M. Masaki Sakamoto, G. S. Nam, J. Y. Choi, M. S. Kim, K. S. Jeong, G. H. La, and H. W. Kim(2016), Feeding Behavior of Crustaceans (Cladocera, Copepoda and Ostracoda): Food Selection Measured by Stable Isotope Analysis Using R Package SIAR in Mesocosm Experiment, Korean Journal of Ecology and Environment, Vol. 49, No. 4, pp. 279-288. 

  2. Choi, K. H., C. I. Lee, K. S. Hwang, S. W. Kim, J. H. Park, and Y. Gong(2008), Distribution and migration of Japanese common squid, Todarodes pacificus, in the southwestern part of the East (Japan) Sea, Fisheries Research, Vol. 91, No. 2-3, pp. 281-290. 

  3. Choo, H. S. and D. S. Kim(1998), The effect of variations in the Tsushima warm currents on the egg and larval transport of anchovy in the Southern Sea of Korea, Korean Journal of Fisheries and Aquatic Sciences, Vol. 31, No. 2, pp. 226-244. 

  4. Cifuentes, L. A., J. H. Sharp, and M. L. Fogel(1988), Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary, Limnology and Oceanography, Vol. 33, pp. 1102-1115. 

  5. DeNiro, M. J. and S. Epstein(1977), Mechanism of carbon isotope fractionation associated with lipid synthesis, Science, Vol. 197, pp. 261-263. 

  6. Dickman, E. M., J. M. Newell, M. J. Gonzalez, and M. J. Vanni(2008), Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels, Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 47, pp. 18408-18412. 

  7. Eom, H. K., H. S. Kim, I. S. Han, and D. H. Kim(2015) An Analysis of Changes in Catch Amount of Offshore and Coastal Fisheries by Climate Change in Korea, Journal of Fisheries Business Administration, Vol. 46, No. 2, pp. 31-41. 

  8. Feigenbaum, D. L.(1991), Food and feeding behaviour. In: Barker GM (ed) The biology of terrestrial molluscs. Oxford University Press, Oxford, pp. 259-288. 

  9. Frank, K., T., B. Petrie, J. S. Choi, and W. C. Leggett(2005), Trophic cascades in a formerly cod-dominated ecosystem, Science, Vol. 308, pp. 1621-1623. 

  10. Fry, B.(1999), Using stable isotopes to monitor watershed influences on aquatic trophodynamics, Canadian Journal of Fisheries and Aquatic Science, Vol. 56, pp. 2167-2171. 

  11. Gal, J. G., M. S. Kim, Y. J. Lee, J. W. Seo, and K. H. Shin(2012), Foodweb of aquatic ecosystem within the Tamjin river through the determination of carbon and nitrogen stable isotope ratios, Korean Journal of Limnological Society, Vol. 45, No. 2, pp. 242-251. 

  12. Ha, S. Y., W. K. Min, D. S. Kim, and K. H. Shin(2014), Trophic importance of meiofauna to polychaetes in a seagrass (Zostera marina) bed as traced by stable isotopes, Journal of Marine Biological Association of the United Kingdom, Vol. 94, No. 1, pp. 121-127. 

  13. Harris, R., P. Wiebe, J. Lenz, H. R. Skjoldal, and M. Huntley(2000), ICES zooplankton methodology manual. Academic Press, San Diego, p. 684. 

  14. Hopkins, T. L.(1985), Food web of an Antarctic midwater ecosystem, Marine Biology, Vol. 89, pp. 197-212. 

  15. Im, D. H. and H. L. Suh(2016), Ontogenetic feeding migration of the euphausiid Euphausia pacifica in the East Sea (Japan Sea) in autumn: a stable isotope approach, Journal of Plankton Research, Vol. 38, No. 4, pp. 904-914. 

  16. Im, D. H., J. H. Wi, and H. L Suh(2015), Evidence for ontogenetic feeding strategies in four calanoid copepods in the East Sea (Japan Sea) in summer, revealed by stable isotope analysis, Ocean Science Journal, Vol. 50, pp. 481-490. 

  17. Ju, S. J., A. R. Ko, and C. R. Lee(2011), Latitudinal Variation of Nutritional Condition and Diet for Copepod Species, Euchaeta sp. and Pleuromamma spp., from the Northwest Pacific Ocean Using Lipid Biomarkers, Ocean and Polar Research, Vol. 33, No. 3, pp. 349-358. 

  18. Kang, Y. H., S. J. Ju, and Y. G. Park(2012), Predicting Impacts of Climate Change on Sinjido Marine Food Web, Ocean and Polar Research, Vol. 34, No. 2, pp. 239-251. 

  19. Kim, H. J., S. J. Ju, J. H. Kang, and K. H. Shin(2019), Diet source of Euphausia pacifica revealed using carbon- and nitrogen-stable isotopes in the Yellow Sea Cold Water Mass in summer, Journal of Oceanography, Vol. 75, No. 1, pp. 51-59. 

  20. Kim, H. S., S. J. Ju, and A. R. Ko(2010), Comparisons of Feeding Ecology of Euphausia pacifica from Korean Waters Using Lipid Composition, Ocean and Polar Research, Vol. 32, No. 2, pp. 165-175. 

  21. Kim, M. S., J. Y. Hwang, O. S. Kwon, and W. S. Lee(2013), Analytical Methodology of Stable Isotopes Ratios: Sample Pretreatment, Analysis and Application. Korean Journal of Limnological Society, Vol. 46, No. 4, pp. 471-487. 

  22. Kim, S. H. and I. C. Pang(2005), Distribution and characteristic of Transport mechanism of eggs and larvae of anchovy, Engraulis japonica, in the Southwestern Sea of Korea in July and November, 2001, Korean Journal of Fisheries and Aquatic Sciences, Vol. 38, No. 5, pp. 331-341. 

  23. Kline, T. C. Jr. and T. M. Willette(2002), Pacific salmon (Oncorhynchus spp.) early marine feeding patterns based on ^{15}N/^{14}N and $^{13}C/^{12}C$ in Prince William Sound, Alaska, Canadian Journal of Fisheries and Aquatic Science, Vol. 59, pp. 1626-1638. 

  24. Kortsch, S., R. Primicerio, M. Fossheim, A. V. Dolgov, and M. Aschan(2015), Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists, Proceedings of The Royal Society B, Vol. 282, p. 20151546. 

  25. Krumins, J. A., D. van Oevelen, T. M. Bezemer, G. B. de Deyn, W. H. G. Hol, E. van Donk, and W. H. van der Putten(2013), Soil and freshwater and marine sediment food webs: their structure and function. Bioscience. Vol. 63, No. 1, pp. 35-42. 

  26. Lee, B. K. and S. Y. Kim(2007), Sedimentary facies and processes in the Ulleung Basin and southern East Sea, Korean Journal of Fisheries and Aquatic Sciences, Vol. 40, No. 3, pp. 160-166. 

  27. Lu, H. J. and H. L. Lee(2014), Changes in the fish species composition in the coastal zones of the Kuroshio Current and China Coastal Current during periods of climate change: Observations from the set-net fishery (1993-2011), Fisheries research, Vol. 155, pp. 103-113. 

  28. Mauchline, J.(1998), The biology of calanoid copepods, Advance in Marine Biology, Vol. 33, pp. 1-710. 

  29. McCutchan, J. H, W. M Lewis, C. Kendall, and C. C. McGrath(2003), Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, Oikos, Vol. 102, pp. 378-390. 

  30. Meyers, P. A.(1997), Organic geochemical proxies. Organic Geo-chemistry, Vol. 27, pp. 213-250. 

  31. Michener, R. H. and L. Kaufman(2007), Stable isotope ratios as tracers in marine food webs: an update. In: Stable Isotopes in Ecology and Environmental Science, 2ed, Oxford. Wiley-Blackwell, pp. 238-282. 

  32. Minagawa, M. and E. Wada(1984), Stepwise enrichment of $^{15}N$ along food chains: further evidence and the relation between ${\delta}^{15}N$ and animal age, Geochimica et Cosmochimica Acta, Vol. 48, pp. 1135-1140. 

  33. Nybakken J. W. and M. D. Bertness(2005), Marine biology: An Ecological Approach, 6ed, Benjamin Cummings, San Francisco, pp. 151-152. 

  34. Ohman, M. D.(1984), Omnivory by Euphausia pacifica: the role of copepod prey, Marine Ecology Progress Series, Vol. 19, pp. 125-131. 

  35. Park, J. I., C. K. Kang, and H. L. Suh(2011), Ontogenetic diet shift in the euphausiid Euphausia pacifica quantified using stable isotope analysis, Marine Ecology Progress Series, Vol. 429, pp. 103-109. 

  36. Parnell, A., R. Inger, S. Bearhop, and A. L. Jackson(2010), Source partitioning using stable isotopes: coping with too much variation, PLOS One, Vol. 5, p. e9672. 

  37. Post, D. M.(2002a), The long and short of food-chain length. Trends Ecology & Evolution, Vol. 17, pp. 269-277. 

  38. Post, D. M.(2002b), Using stable isotopes to estimate trophic position: models, methods, and assumptions, Ecology, Vol. 83, pp. 703-718. 

  39. Rau, G. H., J. L. Teyssie, F. Rassoulzadegan, and S. W. Fowler(1990), $^{13}C/^{12}C $ and $^{15}N/^{14}N$ variations among size-fractionated marine particles: implications for their origin and trophic relationships, Marine Ecology Progress Series, Vol. 59, pp. 33-38. 

  40. Sato, T., T. Miyajima, H. Ogawa, Y. Umezawa, and I. Koike(2006), Temporal variability of stable carbon and nitrogen isotopic composition of size-fractionated particulate organic matter in the hypertrophic Sumida River estuary of Tokyo Bay, Japan, Estuarine, Coastal and Shelf Science, Vol. 68, pp. 245-258. 

  41. Schuckel, U., I. Kroncke, and D. Baird(2015), Linking long-term changes in trophic structure and function of an intertidal macrobenthic system to eutrophication and climate change using ecological network analysis. Marine Ecology Progress Series, Vol. 526, pp. 25-38. 

  42. Suh, H. L. and S. D. Choi(1998), Comparative morphology of the feeding basket of five species of Euphausia (Crustacea, Euphausiacea) in the western North Pacific, with some ecological consideration, Hydrobiologia, Vol. 385, pp. 107-112. 

  43. Sweeting, C. J., N. V. C. Polunin, and S. Jennings(2006), Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues, Rapid Communication in Mass Spectrometry, Vol. 20, pp. 595-601. 

  44. Tang, Q.(2003), The Yellow Sea LME and mitigation action. In: Hempel G, Sherman K (eds) Large marine ecosystems of the world-trends in exploitation, protection and research. Elsevier BV, Amsterdam, pp. 121-144. 

  45. Thayer, G. W., K. A. Bjorndal, J. C. ogden, S. L. Williams, and J. C. Zieman(1984), Role of larger herbivores in seagrass communities, Estuaries, Vol. 7, pp. 351-376. 

  46. Vargas, C. A., R. A. Martinez, H. E. Gonzalez, and N. Silva(2008), Contrasting trophic interactions of microbial and copepod communities in a fjord ecosystem, Chilean Patagonia. Aquatic Microbial Ecology, Vol. 53, pp. 227-242. 

  47. Yoon, H. J., A. R. Ko, J. H. Kang, J. K. Choi, and S. J. Ju(2016), Diet of Chaetognaths Sagitta crassa and S. nagae in the Yellow Sea Inferred from Gut Content and Fatty Acid Analyses, Ocean and Polar Research, Vol. 38, No. 1, pp. 35-46. 

  48. Yoon, J. H. and Y. U. Kim(2009), Review on the seasonal variation of the surface circulation in the Japan/East Sea. Journal of Marine Systems, Vo. 78, No. 2, pp. 197-211. 

  49. Zhang, B., Q. S. Tang, X. S. Jin, and Y. Xue(2005), Feeding competition of the major fish in the East China Sea and the Yellow Sea, Current Zoology, Vol. 51, No. 4, pp. 616-623. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로