$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 영흥도 조간대 갯벌 저서미세조류의 생태적 중요성; 안정동위원소 분석 활용
Ecological Importance of Benthic Microalgae in the Intertidal Mud Flat of Yeongheung Island; Application of Stable Isotope Analysis (SIA) 원문보기

생태와 환경 = Korean journal of ecology and environment, v.49 no.2, 2016년, pp.80 - 88  

강수진 (한양대학교 해양융합과학과) ,  최보형 (한양대학교 해양융합과학과) ,  한용진 (한양대학교 해양융합과학과) ,  신경훈 (한양대학교 해양융합과학과)

초록
AI-Helper 아이콘AI-Helper

영흥도 인근 갯벌의 저서 먹이망 구조를 파악하고, BMA가 저서동물에 대한 먹이원으로써의 중요성을 파악하기 위하여 저서동물 (이매패류, 갑각류, 복족류, 어류)과 먹이원의 탄소 및 질소 안정동위원소비를 분석하였다. 먹이원의 후보인 POM, BMA, 잘피 (Z. marina)와 해조류의 탄소 안정동위원소비는 -26.5‰에서 -8.4‰로 넓은 범위를 보였으며, 저서동물의 탄소 안정동위원소비는 -17.8‰에서 -12.1‰로 먹이원의 탄소 안정동위원소 범위 내에 존재하였다. 해조류 중 녹조류와 SOM을 제외한 먹이원의 질소 안정동위원소비 ($5.7{\pm}1.0$‰)는 저서동물($11.8{\pm}1.9$‰)에 비하여 가벼운 것으로 나타나, 기존의 연구와 유사한 경향을 보였다. 탄소와 질소 안정동위원소비 분석을 통하여 저서동물은 세 그룹으로 나누어질 수 있음을 확인하였으며, 이는 각 그룹 내 저서동물의 먹이원 및 생태적 지위가 유사함을 의미한다. 또한 각 그룹에 대한 BMA의 먹이 기여도가 매우 큰 것으로 파악되었으며 이와 같은 연구 결과를 통해서 영흥도 조간대 갯벌 생태계에 있어 BMA가 가장 기초적인 생물자원이라는 것을 확인할 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

In order to reconstruct a benthic foodweb structure and assess the role of benthic microalgaes as a diet source for benthos, we analyzed the carbon and nitrogen stable isotopes of diverse benthos (bivalves, crustaceans, gastropods and fishes) and potential diets (particulate organic matter, sediment...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 탄소 및 질소 안정동위원소비를 이용하여 국내 서해안 경기만에 위치한 영흥도 주변 갯벌에서 저서 생태계 먹이망 구조 및 저서생물들의 생태적 지위를 파악하고 갯벌의 저서 기초생산자의 생태적 중요성에 대하여 확인해보고자 하였다. 따라서 본 연구는 국내 서해안 갯벌 생태계 에너지 흐름을 이해하기 위한 기초 자료를 제공할 수 있을 것으로 사료된다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
해양 생태계에서 먹이망 구조를 파악하고 생물의 먹이원을 추적하기 위한 연구방법 중, 내용물 분석법의 단점은? 해양 생태계에서 먹이망 구조를 파악하고 생물의 먹이원을 추적하기 위한 연구방법은 위 내용물 분석법 (Hyslope, 1980)이 전통적으로 활용되어 왔다. 그러나 위 내용물 분석법은 소비자가 먹은 먹이의 크기가 작거나, 소화가 진행되어 형체가 남아 있지 않을 경우 그 내용물을 분석하기가 어렵고, 소비자의 체내에 실제 동화되는 유기물의 정보를 알 수 없다는 단점이 있다 (Jones and Waldron, 2003). 최근의 연구에서는 탄소, 질소 안정동위원소비 분석을 활용한 먹이망 구조 연구가 실시되고 있다 (Peterson and Fry, 1987; Grall et al.
조간대 갯벌은 어떤 중요성을 갖는가? 조간대 갯벌은 육지와 해양이 접하는 해안습지로 수산물의 중요한 생산지일 뿐만 아니라, 정화작용, 홍수조절, 야생생물의 보존, 산란과 생육장소로써 그 가치가 매우 큰 것으로 알려져 있어 생태학적으로 중요한 환경으로 알려져 있다 (Je et al., 1998). 특히, 일반적인 해양 생태계에서는 기초생산자인 식물플랑크톤으로부터 에너지 흐름이 시작되는 것에 비하여, 조간대 갯벌과 같이 해수의 유동이 큰 서식 환경에서는 부유성 식물플랑크톤 외에 저서미세조류, 부착 미세조류, 그리고 대형조류와 해초 등과 같은 다양한 형태의 기초생산자가 존재하기 때문에 더욱 복잡한 먹이망 구조를 형성할 수 있다 (Kang et al., 2009).
먹이망 구조 연구에 활용되는 탄소, 질소 안정동위원소비 분석의 특징은? , 2009). 안정동위원소는 그 분별작용을 통해 각 생물지구화학적 과정과 물질 기원에 대한 정보를 알 수 있으며 (Peterson and Fry, 1987), 탄소안정동위원소의 경우 먹이원과 섭식자 간에 안정동위원소 분별작용이 작기 때문에 이를 통해 소비자의 먹이기원을 파악할 수 있으며, 질소안정동위원소의 경우 먹이원과 섭식자 간에 일정한 값 (평균 3.4‰)의 안정동위원소 분별계수가 나타나기 때문에, 소비자의 영양단계를 파악하는 데 활용되고 있다 (Deniro et al., 1981; Peterson and Fry, 1987; Peterson, 1999).
질의응답 정보가 도움이 되었나요?

참고문헌 (44)

  1. Choy, E.J., S. An and C.-K. Kang. 2008. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea). Estuarine Coastal and Shelf Science 78: 215-226. 

  2. Dang, C., P.G. Sauriau, N. Savoye, N. Caill-Milly, P. Martinez, C. Millaret, J. Haure and X. de Montaudouin. 2009. Determination of diet in Manila clams by spatial analysis of stable isotopes. Marine Ecology Progress Series 387:167-177. 

  3. Deniro, M.J. and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341-351. 

  4. Dickman, E.M., J.M. Newell, M.J. Gonzalez and M.J. Vanni. 2008. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. PNAS 105(47):18408-18412. 

  5. Dubois, S., F. Orvain, J. Marin-Leal, M. Ropert and S. Lefebvre. 2007. Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension-feeding species, as revealed by stable isotopes. Marine Ecology Progress Series 336: 151-160. 

  6. Focken, U. and K. Becker. 1998. Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using ${\delta}^{13}C$ data. Oecologia 115: 337-343. 

  7. France, R.L. 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine ecology Progress Series 124: 307-312. 

  8. Grall, J., F. Le Loc'h, B. Guyonnet and P. Riera. 2006. Community structure and food web based on stable isotopes ( ${\delta}^{15}N$ and ${\delta}^{13}C$ analysis of a North Eastern Atlantic maerl bed. Journal of Experimental Marine Biology and Ecology 338: 1-15. 

  9. Ha, S.Y., W.-K. Min, D.-S. Kim and K.-H. Shin. 2014. Trophic importance of meiofauna to polychaetes in a seagrass (Zostera marina) bed as traced by stable isotopes. Journal of the Marine Biological Association of the United Kingdom 94(1):121-127. 

  10. Han, E., H.J. Park, L. Bergamino, K.-S. Choi, E.J. Choy, O.H. Yu, T.W. Lee, H.-S. Park, W.J. Shim and C.-K. Kang. 2015. Stable isotope analysis of a newly established macrofaunal food web 1.5 years after the Hebei Spirit oil spill. Marine Pollution Bulletin 90: 167-180. 

  11. Hanson, C.E., G.A. Hyndes and S.F. Wang. 2010. Differentiation of benthic marine primary producers using stable isotopes and fatty acids: Implications to food web studies. Aquatic Botany 93: 114-122. 

  12. Hyslop, E.J. 1980. Stomach contents analysis-a review of methods and their application. Journal of Fish Biology 17: 411-429. 

  13. Je, J.-G., J.-H. Lee and C.-H. Koh. 1998. Tidal Flat Studies:Present and Future. Ocean and Polar Research 20(2):57-61. 

  14. Jones, J.I. and S. Waldron. 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biology 48: 1396-1407. 

  15. Kang, C.-K., E.J. Choy, Y. Son, J.-Y. Lee, J.K. Kim, Y. Kim and K.-S. Lee. 2008. Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses. Marine Biology 153:1181-1198. 

  16. Kang, C.-K., E.J. Choy, Y.-S. Kim and H.J. Park. 2009. Study of food web structure and trophic level in the sea ponds of an optimized. The Sea Journal of the Korean Society of Oceanography 14(1):56-62. 

  17. Kang, C.-K., J.B. Kim, K.-S. Lee, J.B. Kim, P.-Y. Lee and J.-S. Hong. 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Marine Ecology Progress Series 259: 79-92. 

  18. Kang, C.-K., Y.S. Kang, E.J. Choy, D.S. Kim, B.T. Shim and P.Y. Lee. 2007. Condition, reproductive activity, and biochemical composition of the Manila clam, Tapes philippinarum in natural and newly created sandy habitats of the southern coast of Korea. Journal of Shellfish Research 26(2):401-412. 

  19. Keeley, J.E. and D.R. Sandquist. 1992. Carbon: freshwater plants. Plant Cell Environ 15: 1021-1035. 

  20. Kim, S.-Y., H.-C. Kim, W.-C. Lee, D.-W. Hwang, S.-J. Hong, J.-B. Kim, Y.-S. Cho and C.-S. Kim. 2013. Environmental Characteristics of Seawater and Sediment in Mariculture Management Area in Ongjin-gun, Korea. Journal of the Korean Society of Marine Environment & Safety 19(6):570-581. 

  21. Koh, C.-H. 2001. The Korean tidal flat: Environment, Biology and Human. Seoul National University Press. Seoul. 

  22. Komorita, T., R. Kajihara, H. Tsutsumi, S. Shibanuma, T. Yamada and S. Montani. 2014. Food Sources for Ruditapes philippinarum in a Coastal Lagoon Determined by Mass Balance and Stable Isotope Approaches. PLoS ONE 9(1):e86732. 

  23. Kon, K., Y. Hoshino, K. Kanou, D. Okazaki, S. Nakayama and H. Kohno. 2012. Estuarine, Coastal and Shelf Science 96:236-244. 

  24. Kwon, O.K., D.-K. Min, J. Lee, J.-S. Lee, J.-G. Je and B.L. Choe. 2001. Korean mollusks with color illustration. Hanguel. Busan. 

  25. Lebreton, B., P. Richard, R. Galois, G. Radenac, A. Brahmia, G. Colli, M. Grouazel, C. Andre, G. Guillou and G.F. Blanchard. 2012. Food sources used by sediment meiofauna in an intertidal Zostera noltii seagrass bed: a seasonal stable isotope study. Marine Biology 159: 1537-1550. 

  26. Manelatto, F.L.M. and R.A. Christofoletti. 2001. Natural feeding activity of the crab Callinectes ornatus (Portunidae) in Ubatuba Bay (Sao Paulo, Brazil):influence of season, sex, size and molt stage. Marine Biology 138(3):585-594. 

  27. Miller, D.C., R.J. Geider and H.L. Macintyre. 1996. Microphytobenthos:The Ecological Role of the "Secret Garden" of Unvegetated, Shallow-Water Marine Habitats. I1. Role in Sediment Stability and Shallow-Water Food Webs. Estuaries 19(2A):202-212. 

  28. Minagawa, M. and E. Wada. 1984. Stepwise enrichment of 15N along food chains: Further evidence and the relation between ${\delta}^{15}N$ and animal age. Geochimica et Cosmochimica Acta 48: 1135-1140. 

  29. Ouisse, V., P. Riera, A. Migne, C. Leroux and D. Davoult. 2012. Food web analysis in intertidal Zostera marina and Zostera noltii communities in winter and summer. Marine Biology 159: 165-175. 

  30. Park, H.P., J.M. Jeong, H.J. Kim, S.J. Ye and G.W. Baeck. 2015. Feeding Habits of Javelin Goby Synechogobius hasta on Tide Flat in Sangnae-ri Suncheon, Korea. Korean Journal of Fish Aquatic Sciences 48(6):982-987. 

  31. Persson, L. 1999. Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85:385-397. 

  32. Peterson, B.J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review. Acta Oecologica 20(4):479-487. 

  33. Peterson, B.J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293-320. 

  34. Phillips, L.D. and J.W. Gregg. 2003. Source partitioning using stable isotope: coping with too many sources. Oceaologia 136: 261-269. 

  35. Post, D.M., M.L. Pace and N.G. Hairston Jr. 2000. Ecosystem size determines food-chain length in lakes. Nature 405:1047-1049. 

  36. Riera, P. and P. Richard. 1996. Isotopic Determination of Food Sources of Crassostrea gigas Along a Trophic Gradient in the Estuarine Bay of Marennes-Oleron. Estuarine Coastal and Shelf Science 42: 347-360. 

  37. Riera, P., L. Stal and J. Nieuwenhuize. 2004. Utilization of food sources by invertebrates in a man-made intertidal ecosystem (Westerschelde, the Netherlands):a ${\delta}^{13}C$ and ${\delta}^{15}N$ study. Journal of the Marine Biological Association of the UK 84: 323-326. 

  38. Seo, I.-S. and J.-S. Hong. 2009. Food Habits of the Asian Paddle Crab, Charybdis japonica (A. Milne-Edwards) on the Jangbong Tidal Flat, Incheon, Korea. Korean Journal of Environmental Biology 27(3):297-305. 

  39. Soreide, J.E., T. Tonias, H. Haakon, A.H. Keith and J. Ingar. 2006. Sanoke oreoaration effects on stable C and N isotope values: a comparison of methods in Arctic marine food web studies. Marine Ecology Progress 328: 17-28. 

  40. Vafeiadou, A.-M., P. Materatski, H. Adao, M. De Troch and T. Moens. 2013. Food sources of macrobenthos in an estuarine seagrass habitat (Zostera noltii) as revealed by dual stable isotope signatures. Marine Biology 160: 2517-2523. 

  41. Vizzini, S. and A. Mazzola. 2006. Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: Evidence for spatial variability. Estuarine Coastal and Shelf Science 66: 459-467. 

  42. Yokoyama, H. and Y. Ishihi. 2003. Feeding of the bivalve Theora lubrica on benthic microalgae: isotopic evidence. Marine Ecology Progress Series 255: 303-309. 

  43. Yokoyama, H., A. Tamaki, K. Shimoda, K. Koyama and Y. Ishihi. 2005. Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Marine Ecology Progress Series 296: 115e128. 

  44. Yokoyama, H., T. Skami and Y. Ishihi. 2009. Food sources of benthic animals on intertidal and subtidal bottoms in inner Ariaka sound, southern Japan, determined by stable isotopes. Estuarine Coastal and Shelf Science 82: 243-253. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로