$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development of Kinematic Ephemeris Generator for Korea Pathfinder Lunar Orbiter (KPLO) 원문보기

Journal of astronomy and space sciences, v.37 no.3, 2020년, pp.199 - 208  

Song, Min-Sup (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ,  Park, Sang-Young (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ,  Kim, Youngkwang (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ,  Yim, Jo Ryeong (KPLO Mission and System Team, Korea Aerospace Research Institute)

Abstract AI-Helper 아이콘AI-Helper

This paper presents a kinematic ephemeris generator for Korea Pathfinder Lunar Orbiter (KPLO) and its performance test results. The kinematic ephemeris generator consists of a ground ephemeris compressor and an onboard ephemeris calculator. The ground ephemeris compressor has to compress desired orb...

주제어

표/그림 (14)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The former compresses the ephemeris of orbit propagation data of spacecraft and the latter compresses the ephemeris of JPL planetary ephemerides. Compressed ephemeris data on the ground system are sent to the KPLO and then the onboard ephemeris calculator calculate ephemeris of the spacecraft and the Sun/Moon using these uploaded data.
  • In this study, a kinematic ephemeris generator for the KPLO is developed and its performance tests are conducted. The kinematic ephemeris generator consists of two parts: a ground ephemeris compressor and an onboard ephemeris calculator.
  • The spacecraft ephemeris can be generated by using Polynomial interpolation with Uniform node, Chebyshev interpolation and Hermite interpolation, respectively. In this study, after testing their performances of the three interpolation methods, an appropriate interpolation is chosen and validated for the KPLO mission.
  • Thus, a kinematic ephemeris generator for the KPLO has to utilizes a method of interpolating the position information only. The main contribution of this study is that a kinematic ephemeris generator algorithm based on very limited conditions for the KPLO is developed and validated. The algorithm consists of a ground ephemeris compressor and an onboard ephemeris calculator.
  • For the KPLO mission, onboard computer must generate ephemeris data every second for the spacecraft and the Sun/Moon. Therefore, the tests were conducted by comparing the orbit propagation data (as true values) with the generated ephemeris every second. The test parameters contain maximum distance error, mean distance error, and standard deviation.

대상 데이터

  • In the tests, JPL planetary ephemerides DE 430 is used. Table 5, Table 6, Table 7 are the test results of the Sun ephemeris generation by using Polynomial interpolation with Uniform node, Chebyshev interpolation and Hermite interpolation, respectively.
  • To test the spacecraft ephemeris generation, ephemeris data which is similar to the mission orbit is required. The mission orbit is a circular polar orbit with 100km altitude. General Mission Analysis Tool (GMAT) is used to get the reference orbit by propagating orbit based on the mission orbit (NASA GSFC 2017).

이론/모형

  • For the Apollo missions from 1969 to 1971, coasting integration routine with Enke’s method was used to calculate the ephemeris of the spacecraft (Savely et al. 1972).
  • By referring these research, a KPLO ephemeris generator has been developed by using a kinematical method. The kinematic ephemeris generator is made by utilizing the ephemeris compression method of the NASA JPL plan-etary Ephemerides (Newhall 1988; Folkner et al. 2014). A kinematic ephemeris generator equipped in onboard computer of spacecraft generates spacecraft’s ephemeris at a desired time, by using uploaded information from a ground system in the Earth.
  • In the last step, it computes polynomial coefficients of the interpolation function at the normalized time by using ephemeris calculated in the pre-vious step. The polynomial coefficients of the interpolation function are calculated by using Vandermonde matrix.
  • Consequently, lower order of approximation function can be allowed which has less number of coefficients hence, small data size. The spacecraft ephemeris can be generated by using Polynomial interpolation with Uniform node, Chebyshev interpolation and Hermite interpolation, respectively. In this study, after testing their performances of the three interpolation methods, an appropriate interpolation is chosen and validated for the KPLO mission.
본문요약 정보가 도움이 되었나요?

참고문헌 (16)

  1. Andolz FJ, Lunar Prospector Mission Handbook (Lockheed Martin Missiles & Space, Sunnyvale, CA, 1998). 

  2. Antreasian PG, Bhat RS, Broschart SB, Chung MK, Criddle KE, et al., The twin GRAIL spacecraft into science formation at the moon, in 23rd International Symposium on Space Flight Dynamics, Pasadena, CA, 29 Oct-2 Nov 2012. 

  3. Atkinson KE, An Introduction To Numerical Analysis, 2nd ed. (John Wiley & Sons, New York, NY, 1989). 

  4. Deprit A, Pickard H, Poplarchek W, Compression of ephemerides by discrete Chebyshev approximations, NAVIGATION. 26, 1-11 (1979). https://doi.org/10.1002/j.2161-4296.1979.tb01350.x 

  5. Folkner WM, Williams JG, Boggs DH, Park RS, Kuchynka P, The planetary and Lunar Ephemerides DE430 and DE431, IPN Progress Report 42-196 (2014). 

  6. Heath MT, Scientific Computing: An Introductory Survey, 2nd ed. (SIAM, Philadelphia, PA, 2018). 

  7. Ju G, Korean Pathfinder Lunar Orbiter (KPLO) status update, in Annual Meeting of the Lunar Exploration Analysis Group (LEAG) Conference, Columbia, MD, 10-12 Oct 2017. 

  8. Kim YR, Song YJ, Observational arc-length effect on orbit determination for Korea Pathfinder Lunar Orbiter in the earth-moon transfer phase using a sequential estimation, J. Astron. Space Sci. 36, 293-306 (2019). https://doi.org/10.5140/JASS.2019.36.4.293 

  9. Lee E, Kim Y, Kim M, Park SY, Development, demonstration and validation of the deep space orbit determination software using lunar prospector tracking data, J. Astron. Space Sci. 34, 213-223 (2017). https://doi.org/10.5140/JASS.2017.34.3.213 

  10. Mathews JH, Fink KD, Numerical Methods using MATLAB, 3rd ed. (Pearson, New Delhi, India, 1999). 

  11. NASA GSFC, General mission analysis tool (GMAT) (2017) [Internet], viewed 2020 Jul 6, available from: https://software.nasa.gov/software/GSC-17177-1 

  12. Newhall XX, Numerical representation of planetary ephemeris, Celest. Mech. 45, 305-310 (1988). https://doi.org/10.1007/BF01229014 

  13. Savely RT, Cockrell BF, Pines S, Apollo experience report: onboard navigational and alignment software, NASA Technical Note D-6741 (1972). 

  14. Song MS, Development and performance verification of ephemeris generator for Korea pathfinder lunar orbiter, Master Thesis, Yonsei University (2019). 

  15. Stewart GW, Afternotes on Numerical Analysis (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1996). 

  16. Wei E, Yan W, Jin S, Wei J, Kutoglu H, et al., Contribution of simulated space VLBI to the Chang'E-1 orbit determination and EOPs estimation, Aerosp. Sci. Technol. 46, 256-263 (2015). https://doi.org/10.1016/j.ast.2015.07.016 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로